【24h】

The Kondo effect in a single-electron transistor

机译:单电子晶体管中的近藤效应

获取原文
获取原文并翻译 | 示例

摘要

How localized electrons interact with delocalized electrons is a question central to many of the problems at the forefront of solid state physics. The simplest example, the Kondo effect, occurs when an impurity atom with an unpaired electron is placed in a metal, and the energy of the unpaired electron is far below the Fermi energy. At low temperatures a spin singlet state is formed between the unpaired localized electron and delocalized electrons at the Fermi energy. The consequences of this singlet formation were first observed over sixty years ago in metals with magnetic impurities, but full theoretical understanding was slow to come. Today, the situation has reversed: scaling theories and recent renormalization group calculations can predict quantitatively the bonding strength of the singlet state, and the singlet's effect on the conduction electrons at all temperatures. The detailed dependence of these properties on parameters such as the energy of the localized electron cannot be tested experimentally in the classic Kondo systems, since the relevant parameters cannot easily be tuned for impurities in a metal. Recently it has become possible to test these predictions with a new experimental approach-creating an artificial Kondo system by nanofabrication. The confined droplet of electrons interacting with the leads of a single electron transistor (SET) is closely analogous to an impurity atom interacting with the delocalized electrons in a metal, as described in the Anderson model. We review here measurements on a new generation of SETs that display all the aspects of the Kondo effect: the spin singlet forms and causes an enhancement of the zero-bias conductance when the number of electrons on the artificial atom is odd but not when it is even. The singlet is altered by applying a voltage or magnetic field or by increasing the temperature, all in ways that agree with predictions.
机译:局部电子如何与离域电子相互作用是固态物理学前沿许多问题的中心问题。最简单的例子是近藤效应,发生在具有未配对电子的杂质原子置于金属中,并且未配对电子的能量远低于费米能量时。在低温下,在费米能量下,未成对的局域电子和离域电子之间形成自旋单重态。这种单线态形成的后果最早是在六十多年前在具有磁性杂质的金属中观察到的,但是对理论的全面了解还很缓慢。如今,情况已经发生了逆转:缩放理论和最近的重归一化组计算可以定量地预测单重态的键合强度,以及在所有温度下单重态对传导电子的影响。在经典的Kondo系统中,无法通过实验测试这些属性对参数(例如局部电子的能量)的详细依赖性,因为无法轻松调整金属中杂质的相关参数。最近,已经有可能通过一种新的实验方法来测试这些预测,即通过纳米加工创建一个人造的近藤系统。如安德森模型中所述,与单个电子晶体管(SET)的引线相互作用的受限电子滴与与金属中的离域电子相互作用的杂质原子非常相似。我们在这里回顾了新一代SET的测量结果,这些SET显示了Kondo效应的所有方面:当人造原子上的电子数为奇数时,自旋单峰形成并引起零偏电导的增强,而当原子数为零时,则不会。甚至。通过施加电压或磁场或通过升高温度来改变单线态,所有方式均与预测相符。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号