首页> 外文会议>2016 Progress In Electromagnetic Research Symposium >Nanoscale thermal expansion imaging of a resistive thermal heater using diffraction phase microscopy
【24h】

Nanoscale thermal expansion imaging of a resistive thermal heater using diffraction phase microscopy

机译:使用衍射相显微镜的电阻热加热器的纳米级热膨胀成像

获取原文
获取原文并翻译 | 示例

摘要

Summary form only given. Understanding the dynamics of thermal expansion is important in many fields, including physics, chemistry, and engineering. We measured the height change of a resistive thermal heater throughout the thermal expansion process using epi-illumination diffraction phase microscopy (epi-DPM). This real-time quantitative phase imaging (QPI) method can reconstruct the thermal expansion with nanometer height measurement accuracy. We use a conventional epi-DPM setup [1, 2] with a 405nm diode laser. The sample is observed by a 2.5× microscope objective with a field of view (FOV) of 650 μm × 495 μm. The first order light from the UV transmission grating remains unfiltered as the image field. Meanwhile, the zeroth order is filtered down as the reference field. Compared with previous DPM setup that had the zeroth order as the image field and the first order as the reference field, the system noise here is reduced from 0.8-2.0nm to 0.7-1.5 nm. We obtain the interferogram and extract the phase information via a Hilbert transform. A background image was first taken without voltage applied and then used to subtract the background noise. All subsequent DPM images of the resistive thermal heater were taken on the same region. A continuous-wave (cw) voltage was applied to the resistor for ~ 3 min and its height change reached a maximum value. Figures 1(a) and (b) show the material structure and top view of the resistor. The resistor was fabricated on a 500 μm thick Si substrate with a 75nm SiO2 insulator layer. A 150nm gold serpentine shaped thermal heater resistor was deposited on the layer and the conductor width was 10 μm. The resistor value is 67 Ohms. The sample was mounted onto a printed circuit board (PCB) and fixed on the stage. Figure 1(c) shows the height changes over the whole 650 μm width. The average height changes of the resistor were about 32.2 nm, 64.3 nm, and 109.0nm when cw 2 V, 4V and 6V were applied on the resistor, respectively. The thermal expansion of a resistive thermal heater was accurately reconstructed using epi-DPM. Therefore, this technique would be of great value for further developing in-situ monitoring of thermal expansion in various industrial processes.
机译:仅提供摘要表格。了解热膨胀的动力学在许多领域都很重要,包括物理,化学和工程。我们使用落射照明衍射相显微镜(epi-DPM)在整个热膨胀过程中测量了电阻式热加热器的高度变化。这种实时定量相位成像(QPI)方法可以以纳米高度测量精度重建热膨胀。我们将传统的Epi-DPM设置[1,2]与405nm二极管激光器一起使用。用2.5倍显微镜物镜观察样品,视场(FOV)为650μm×495μm。来自紫外透射光栅的一阶光保持为像场未过滤的状态。同时,零阶被过滤掉作为参考字段。与以前的DPM设置相比,之前的DPM设置将零级作为像场,将第一级作为参考场,此处的系统噪声从0.8-2.0nm降低到0.7-1.5nm。我们获得干涉图并通过希尔伯特变换提取相位信息。首先在没有施加电压的情况下拍摄背景图像,然后将其用于减去背景噪声。电阻热加热器的所有后续DPM图像均在同一区域上拍摄。在电阻上施加连续波(cw)电压约3分钟,其高度变化达到最大值。图1(a)和(b)显示了电阻器的材料结构和俯视图。该电阻器是在具有75nm SiO2绝缘层的500μm厚的Si基板上制造的。将150nm金蛇形加热电阻器沉积在该层上,导体宽度为10μm。电阻值为67欧姆。将样品安装到印刷电路板(PCB)上并固定在平台上。图1(c)显示了整个650μm宽度上的高度变化。当将cw 2 V,4V和6V分别施加到电阻器时,电阻器的平均高度变化分别约为32.2 nm,64.3 nm和109.0nm。使用Epi-DPM可以准确地重建电阻式热加热器的热膨胀。因此,该技术对于进一步开发各种工业过程中热膨胀的现场监测将具有重要的价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号