首页> 外文会议>2015 Joint Conference of the IEEE International Frequency Control Symposium amp; European Frequency and Time Forum >Characterization of an ultra stable quartz oscillator thanks to Time Transfer by Laser Link (T2L2, Jason-2)
【24h】

Characterization of an ultra stable quartz oscillator thanks to Time Transfer by Laser Link (T2L2, Jason-2)

机译:借助Laser Link(T2L2,Jason-2)进行的时间传递,可表征超稳定的石英振荡器

获取原文
获取原文并翻译 | 示例

摘要

The T2L2 experiment (Time Transfer by Laser Link), on-board Jason-2, with an orbit at 1335 km, since June 2008 allows the clock synchronization between ground clock (generally H-maser) and space clock (quartz Ultra Stable Oscillator (USO) DORIS) with a stability of a few picoseconds over 100 seconds. In common view, when two laser stations see T2L2, the time transfer stability is less than 10 picosecondes over few seconds. In order to perform non-common view time transfer for synchronizing distant ground clocks, it is important to precisely characterize the on-board oscillator at least on 10,000 seconds (maximal flight time between two distant stations). The key is to study the space environment on the Jason-2 orbit, to separate deterministic and stochastic behaviors of the USO (shift and drift). We show that T2L2 is able to provide accurate frequencies, which are deduced from the ground to space time transfer over each laser station (few 10). Since 2008, these time transfers helped us to create an on-board frequency data base. The major contributors to these frequency variations on 10,000 seconds are temperature and space radiation especially due to the South Atlantic Anomaly (SAA) (in which Jason-2 pass through). Aging can be considered as a linear drift during 10,000 seconds and the effect of radiation like a very small shift over each SAA overflight. The effect of the temperature is drived by the on-board temperature measurement. A model is realized to represent these effects on USO with a RMS of few 10 over 10,000 seconds. Space phenomena are also playing an important role in long term. Actually, if we consider both accumulation dose received by radiation and aging, we can explain 99.9 % of the global frequency variation of the USO since the beginning of the T2L2 mission.
机译:自2008年6月以来,Jason-2机载T2L2实验(通过激光链路进行时间转移)的轨道运行在1335 km,允许地面时钟(通常为H-maser)与空间时钟(石英超稳定振荡器( USO)DORIS)在100秒内具有几皮秒的稳定性。通常,当两个激光站看到T2L2时,几秒钟内的时间传递稳定性小于10皮秒。为了执行非公共视图时间传输以同步远处的地面时钟,重要的是至少在10,000秒(两个远距离站之间的最大飞行时间)上精确表征机载振荡器。关键是研究Jason-2轨道上的空间环境,以区分USO的确定性和随机行为(漂移和漂移)。我们表明,T2L2能够提供准确的频率,该频率是从地面到每个激光站的时空传输推论得出的(很少10个)。自2008年以来,这些时间转移帮助我们创建了车载频率数据库。 10,000秒内这些频率变化的主要原因是温度和空间辐射,特别是由于南大西洋异常(SAA)(Jason-2穿过其中)所致。老化可以认为是10,000秒内的线性漂移,并且辐射的影响就像每次SAA飞越时的很小偏移一样。温度的影响取决于车载温度测量。实现了一个模型来表示这些对USO的影响,其10,000秒内的RMS仅为10。从长远来看,空间现象也起着重要作用。实际上,如果我们同时考虑辐射和衰老所接收的累积剂量,则可以解释自T2L2任务开始以来USO的99.9%的全球频率变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号