首页> 外文会议>2015 IEEE Magnetics Conference >Bending effect on magnetoresistive silicon probes
【24h】

Bending effect on magnetoresistive silicon probes

机译:弯曲对磁阻硅探针的影响

获取原文
获取原文并翻译 | 示例

摘要

Mapping the brain's activity can be done either with non-invasive techniques (e.g. magnetic resonance, electro/magnetoencephalography), or by studies performed in-vivo/vitro at the cell level usually using small-sized electrodes (10 μm) to measure local potentials. Probing locally the neuronal magnetic fields created by the synaptic currents can be done with magnetrodes [1], which combine high sensitive magnetoresistive sensors (spinvalve, SV) with micro-machined Si probes. The SV sensors were deposited by ion beam with the following stack: Ta 2/NiFe 3.5/CoFe 2.3/Cu 2.3/CoFe 2.3/MnIr 8/Ta 5/TiWN 15 (thickness in nm). The sensors were patterned in arrays of N=952 elements (350 μm each) connected in series, in order to bring the detectivity levels below pTesla. This strategy was already demonstrated viable when the device footprint is not an issue for the considered application [2]. The sensors were incorporated in micromachined thin Si needles with well defined tip angle and intrinsic bending capability. This approach induces a minimum damage when inserting the probes within the brain tissues and enhances the sensors proximity to the signal sources, with a spatial resolution unmatched by any of the competing neuroscience tools. The Si needles were defined [3] with a length of 11.3 mm and width of 1 mm [Figure 1]. The separation between the tip of the needle and the array middle point was set in 3.5 mm. In the fabrication process three Si substrates (Young modulus E=1.3×10 dyn/cm) with different thicknesses are used: (i) 700 μm, (ii) 400 μm and (iii) 50 μm, being the later a Silicon-On-Insulator (SOI) wafer. The impact of bending in the sensor transfer curve and noise level were investigated, aiming at optimizing the detectivity limits under conditions si- ilar to those implemented in the in-vivo experiments.
机译:可以使用非侵入性技术(例如磁共振,电/磁脑图)或通过在细胞水平进行的体内/体外研究(通常使用小型电极(10μm)来测量局部电位)来绘制大脑活动的图。可以用磁棒[1]来局部探测由突触电流产生的神经元磁场,该磁棒将高灵敏度的磁阻传感器(自旋阀,SV)与微加工的Si探针结合在一起。 SV传感器通过离子束沉积,堆积如下:Ta 2 / NiFe 3.5 / CoFe 2.3 / Cu 2.3 / CoFe 2.3 / MnIr 8 / Ta 5 / TiWN 15(厚度单位为nm)。为了使检测水平低于pTesla,将传感器按N = 952个元素(每个350μm)的阵列进行构图,每个元素串联连接。当设备占用空间不是所考虑的应用程序的问题时,这种策略已经被证明是可行的[2]。传感器被并入具有明确定义的尖端角度和固有弯曲能力的微机械细Si针中。当将探针插入脑组织内时,这种方法产生的损伤最小,并增强了传感器与信号源的接近度,其空间分辨率是任何竞争性神经科学工具所无法比拟的。 Si针定义为[3],长度为11.3 mm,宽度为1 mm [图1]。针尖与阵列中点之间的距离设置为3.5 mm。在制造过程中,使用了三种具有不同厚度的Si基板(杨氏模量E = 1.3×10 dyn / cm):( i)700μm,(ii)400μm和(iii)50μm,后者是后来的Silicon-On -绝缘体(SOI)晶片。研究了弯曲对传感器传递曲线和噪声水平的影响,目的是在与体内实验相同的条件下优化检测限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号