首页> 外文会议>2015 1st Workshop on Nanotechnology in Instrumentation and Measurement >Polymer Nanocomposites based on in situ reduced graphene oxide for photovoltaic applications in innovative hybrid solar cells
【24h】

Polymer Nanocomposites based on in situ reduced graphene oxide for photovoltaic applications in innovative hybrid solar cells

机译:基于原位还原氧化石墨烯的聚合物纳米复合材料,用于创新型混合太阳能电池中的光伏应用

获取原文
获取原文并翻译 | 示例

摘要

Polymeric nanocomposites based on UV in situ reduced graphene oxide were developed in order to enhance the electrical conductivity of polymeric matrices for the realization of highly efficient solid-state hybrid solar cells based on organometal trihalide perovskite absorbers. Graphene is a 2-D single layer of sp2-bonded carbon atoms characterized by high specific surface area, Young's modulus, thermal stability, mobility of charge carriers and plus fascinating transport phenomena such as the quantum Hall effect. Among several developed methods to prepare graphene, including chemical vapor deposition (CVD) and mechanical exfoliation, the chemical reduction of graphene oxide (GO) is regarded as the most promising for future implementation in large-scale production. In this work, a GO prepared by a modified Hummers method was used and reduced by a green method based on UV treatment in inert atmosphere. Graphene oxide reduction was monitored evaluating the change of absorption peak by UV-visible spectroscopy and X-ray photoelectron spectroscopy (XPS), monitoring the decrease of the oxygen groups linked to carbon. Dilute nanocomposites suspensions were then prepared by optimizing the dispersion procedure of GO in the polymeric matrix as function of process parameters, i.e. time, temperature and composition. Nanocomposite films were also realized by spin coating on different substrates and characterized by several techniques. At last the film showing the better properties was implemented in a hybrid solar cell to evaluate the increase of electrical conductivity and power conversion efficiency.
机译:为了增强聚合物基体的导电性,开发了基于UV原位还原的氧化石墨烯的聚合物纳米复合材料,以实现基于有机金属三卤化物钙钛矿吸收剂的高效固态混合太阳能电池。石墨烯是由sp2键合的碳原子组成的二维单层,其特征在于高比表面积,杨氏模量,热稳定性,电荷载流子迁移率以及引人入胜的传输现象,例如量子霍尔效应。在几种制备石墨烯的已开发方法中,包括化学气相沉积(CVD)和机械剥离技术,氧化石墨烯(GO)的化学还原被认为是未来大规模生产中最有希望的方法。在这项工作中,使用了通过改进的Hummers方法制备的GO,并通过了基于在惰性气氛中进行UV处理的绿色方法对GO进行了还原。通过UV-可见光谱和X射线光电子能谱(XPS)来监测氧化石墨烯的还原,从而评估吸收峰的变化,并监测与碳连接的氧基团的减少。然后通过根据工艺参数即时间,温度和组成来优化GO在聚合物基质中的分散程序来制备稀的纳米复合物悬浮液。纳米复合膜还可以通过旋涂在不同的基材上来实现,并通过多种技术进行了表征。最后,在混合太阳能电池中使用了表现出更好性能的薄膜,以评估电导率和功率转换效率的提高。

著录项

  • 来源
  • 会议地点 Lecce(IT)
  • 作者单位

    Department of Engineering for Innovation, University of Salento, Lecce, 1,73100, Italy;

    Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, Lecce, 73100, Italy;

    Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, Lecce, 73100, Italy;

    Center for Bio-Molecular Nanotechnology - Fondazione Istituto Italiano di Tecnologia IIT, Arnesano, Lecce, 73010, Italy;

    Istituto di Nanotecnologie CNR-Nanotec, Lecce, 73100, Italy;

    Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, Lecce, 73100, Italy;

    Istituto per la Sintesi e la Fotoreattivita’ CNR, Bologna, 40120, Italy;

    Istituto per la Sintesi e la Fotoreattivita’ CNR, Bologna, 40120, Italy;

    Istituto per la Sintesi e la Fotoreattivita’ CNR, Bologna, 40120, Italy;

    Laboratorio di Chimica Analitica, Università del Salento (DiSTeBA), Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Lecce, 73100, Italy;

    Laboratorio di Chimica Analitica, Università del Salento (DiSTeBA), Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Lecce, 73100, Italy;

    Department of Engineering for Innovation, University of Salento, Lecce, 1,73100, Italy;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Nanocomposites; Polymers; Atmosphere; Graphene; Photovoltaic cells; Absorption; Films;

    机译:纳米复合材料;聚合物;大气;石墨烯;光伏电池;吸收;薄膜;;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号