【24h】

Competing wave-breaking mechanisms in second harmonic generation

机译:二次谐波产生中的竞争性破波机制

获取原文

摘要

Since the early studies of dispersive nonlinear wave propagation, different mechanisms of breaking have been predicted and observed. Modulational (or Bejamin-Feir-Lighthill) instability (MI), in its basic manifestation entails breaking of a periodic wave (carrier) due to the exponential amplification of low frequency (long wavelength) modulations, observed in water waves and optics. When the instability builds up from noise, the breaking occurs at the most unstable frequency, determined by the underlying mechanism of nonlinear phase-matching. On the other hand, a completely different and universal mechanism involves, in the weakly dispersive limit, a gradient catastrophe, where a smooth envelope steepens until it develops an infinite gradient in finite time. Such breaking is conjectured to be generic for Hamiltonian models which possess a hyperbolic dispersionless (hydrodynamic) limit. Beyond the first point of infinite gradient, the regularizing action of dispersion leads to form unsteady dispersive shock waves (DSW), characterized by an expanding fan progressively filled with fast oscillations (the smaller the dispersion the shorter the oscillation wavelength). In settings described by the scalar nonlinear Schro¨dinger (NLS) equation, these two mechanims are mutually exclusive. Indeed the gradient catastrophe occurs in the defocusing regime characterized by a hyperbolic dispersionless limit, which has been also the focus of experimental work on DSW recently [1,2]. Conversely, MI takes place in the focusing regime where, however, the dispersionless limit turns out to be elliptic and ill-posed.
机译:自从对色散非线性波传播的早期研究以来,已经预测并观察到了不同的断裂机理。调制(或Bejamin-Feir-Lighthill)不稳定性(MI)的基本表现形式是由于在水波和光学器件中观察到的低频(长波长)调制的指数放大,导致周期波(载波)破裂。当不稳定性由噪声引起时,断裂发生在最不稳定的频率上,这由非线性相位匹配的潜在机制决定。另一方面,完全不同的通用机制在弱色散极限中涉及梯度突变,其中平滑包络变陡,直到它在有限时间内形成无限梯度。对于具有双曲无弥散(流体动力)极限的哈密顿模型,这种破裂被认为是通用的。除了无限梯度的第一点之外,色散的正则化作用导致形成不稳定的色散冲击波(DSW),其特征是逐渐膨胀的风扇逐渐充满快速振荡(色散越小,振荡波长越短)。在标量非线性薛定ding(NLS)方程描述的设置中,这两个机制是互斥的。的确,梯度灾难发生在以双曲线无色散极限为特征的散焦状态下,近来这也是DSW实验工作的重点[1,2]。相反,MI在聚焦状态下发生,但是,无色散极限最终变为椭圆形且不适定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号