【24h】

Characterization of Microscale Material Behavior with MEMS Resonators

机译:利用MEMS谐振器表征微观材料的行为

获取原文
获取原文并翻译 | 示例

摘要

For reliable MEMS device fabrication and operation, there is a continued demand for precise characterization of materials at the micron scale. This paper presents a novel material characterization device for fatigue lifetime testing. The fatigue specimen is subjected to multi-axial loading, which is typical of most MEMS devices. In order to generate a sufficiently large stress, the fatigue devices were tested in resonance to produce a maximum von Mises equivalent stress as high as 1 GPa, which is in the fracture strength range reported for polysilicon. A further increase of the stress in the beam specimens was obtained by introducing a notch with a focused ion beam. The notch resulted into a stress concentration factor of about 3.8, thereby producing maximum von Mises equivalent stress in the range of 1-4 GPa. This study provides insight into multi-axial fatigue testing under typical MEMS conditions and additional information about micron-scale polysilicon mechanical behavior, which is the current basic building material for MEMS devices.
机译:为了可靠的MEMS器件制造和操作,持续需要微米级的材料精确表征。本文提出了一种用于疲劳寿命测试的新型材料表征装置。疲劳样品会经受多轴载荷,这是大多数MEMS器件的典型特征。为了产生足够大的应力,对疲劳装置进行了共振测试,以产生高达1 GPa的最大冯·米塞斯等效应力,该应力在多晶硅报道的断裂强度范围内。通过引入带有聚焦离子束的切口,可以进一步增加束样本中的应力。切口导致应力集中系数约为3.8,从而产生1-4 GPa范围内的最大冯·米塞斯等效应力。这项研究提供了在典型MEMS条件下进行多轴疲劳测试的见识,以及有关微米级多晶硅机械行为的附加信息,后者是MEMS设备的当前基础建筑材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号