首页> 外文会议>2003 ASME(American Society of Mechanical Engineers) Turbo Expo; Jun 16-19, 2003; Atlanta, Georgia >A NOVEL APPROACH TO THE OPTIMISATION OF REACTION RATE PARAMETERS FOR METHANE COMBUSTION USING MULTI-OBJECTIVE GENETIC ALGORITHMS
【24h】

A NOVEL APPROACH TO THE OPTIMISATION OF REACTION RATE PARAMETERS FOR METHANE COMBUSTION USING MULTI-OBJECTIVE GENETIC ALGORITHMS

机译:多目标遗传算法优化甲烷燃烧反应速率参数的新方法

获取原文
获取原文并翻译 | 示例

摘要

This study uses a multi-objective genetic algorithm to determine new reaction rate parameters (A's, β's and E_a's in the non-Arrhenius expressions) for the combustion of a methane/air mixture. The multi-objective structure of the genetic algorithm employed allows for the incorporation of both perfectly stirred reactor and laminar premixed flames data in the inversion process, thus enabling a greater confidence in the predictive capabilities of the reaction mechanisms obtained. Various inversion procedures based on reduced sets of data are investigated and tested on methane/air combustion in order to generate efficient inversion schemes for future investigations concerning complex hydrocarbon fuels. The inversion algorithms developed are first tested on numerically simulated data. In addition, the increased flexibility offered by this novel multi-objective GA has now, for the first time, allowed experimental data to be incorporated into our reaction mechanism development. A GA optimised methane-air reaction mechanism is presented which offers a remarkable improvement over a previously validated starting mechanism in modelling the flame structure in a stoichiometric methane-air premixed flame (http://www.leeds.ac.ulc/ERRI/research/res.html). In addition, the mechanism outperforms the predictions of more detailed schemes and is still capable of modelling combustion phenomena that were not part of the optimisation process. Therefore, the results of this study demonstrate that the genetic algorithm inversion process promises the ability to assess combustion behaviour for fuels where the reaction rate coefficients are not known with any confidence and, subsequently, accurately predict emission characteristics, stable species concentrations and flame characterisation. Such predictive capabilities will be of paramount importance within the gas turbine industry.
机译:这项研究使用多目标遗传算法来确定甲烷/空气混合物燃烧的新反应速率参数(非Arrhenius表达式中的A,β和E_a)。遗传算法的多目标结构允许将完美搅拌的反应器和层流预混火焰数据合并到反演过程中,从而对获得的反应机理的预测能力有更大的信心。对基于减少的数据集的各种反演程序进行了研究,并在甲烷/空气燃烧方面进行了测试,以生成有效的反演方案,以用于未来有关复杂碳氢燃料的研究。首先对数值模拟数据测试开发的反演算法。此外,这种新颖的多目标遗传算法所提供的更高的灵活性现在第一次允许将实验数据纳入我们的反应机理开发中。提出了一种经GA优化的甲烷-空气反应机理,与先前验证的启动机理相比,在化学计量的甲烷-空气预混火焰中对火焰结构进行建模时,该机理得到了显着改进(http://www.leeds.ac.ulc/ERRI/research /res.html)。此外,该机制优于更详细方案的预测,并且仍然能够对不属于优化过程的燃烧现象进行建模。因此,这项研究的结果表明,遗传算法的反演过程有望评估那些反应速率系数未知的燃料的燃烧行为,从而准确地预测排放特性,稳定的物种浓度和火焰表征。在燃气轮机行业中,这种预测能力至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号