首页> 外文会议>2003 ASME(American Society of Mechanical Engineers) Turbo Expo; Jun 16-19, 2003; Atlanta, Georgia >LARGE-EDDY SIMULATION OF ATOMIZING SPRAY WITH STOCHASTIC MODELING OF SECONDARY BREAKUP
【24h】

LARGE-EDDY SIMULATION OF ATOMIZING SPRAY WITH STOCHASTIC MODELING OF SECONDARY BREAKUP

机译:二次破裂随机建模的大雾化雾气模拟

获取原文
获取原文并翻译 | 示例

摘要

Large-eddy simulation (LES) of reacting multi-phase flows in practical combustor geometries is essential to accurately predict complex physical phenomena of turbulent mixing and combustion dynamics. This necessitates use of Lagrangian particle-tracking methodology for liquid phase in order to correctly capture the droplet evaporation rates in the sparse-liquid regime away from the fuel injector. Our goal in the present work is to develop a spray-atomization methodology which can be used in conjuction with the standard particle-tracking schemes and predict the droplet-size distribution accurately. The intricate process of primary atomization and lack of detailed experimental observations close to the injector requires us to model its global effects and focus on secondary breakup to capture the evolution of droplet sizes. Accordingly, a stochastic model for LES of atomizing spray is developed. Following Kolmogorov's idea of viewing solid particle-breakup as a discrete random process, atomization of liquid blobs at high relative liquid-to-gas velocity is considered in the framework of uncorrelated breakup events, independent of the initial droplet size. Kolmogorov's discrete model of breakup is represented by Fokker-Planck equation for the temporal and spatial evolution of droplet radius distribution. The parameters of the model are obtained dynamically by relating them to the local Weber number. A novel hybrid-approach involving tracking of individual droplets and a group of like-droplets known as parcels is developed to reduce the computational cost and maintain the essential features and dynamics of spray evolution. The present approach is shown to capture the complex fragmentary process of liquid atomization in idealized and realistic Diesel and gas-turbine combustors.
机译:在实际的燃烧室几何形状中对多相流进行反应的大涡模拟(LES)对于准确预测湍流混合和燃烧动力学的复杂物理现象至关重要。这需要将拉格朗日粒子跟踪方法用于液相,以便正确地捕获稀疏液态中远离燃料喷射器的液滴蒸发速率。我们在当前工作中的目标是开发一种可与标准颗粒跟踪方案结合使用的喷雾雾化方法,并准确预测液滴尺寸分布。一次雾化的复杂过程和靠近喷头的详细实验观察缺乏要求我们对喷头的整体效应建模,并专注于二次破碎以捕获液滴尺寸的演变。因此,建立了雾化喷雾LES的随机模型。遵循Kolmogorov将固体粒子分解视为离散随机过程的想法,在不相关的分解事件的框架内考虑了以较高的液-气相对速度使液体团块雾化,而与初始液滴大小无关。 Kokmogorov的离散破碎模型由Fokker-Planck方程表示,用于液滴半径分布的时空演化。通过将参数与本地Weber编号相关联,可以动态获取模型的参数。开发了一种新颖的混合方法,该方法涉及跟踪单个液滴和一组称为液滴的类似液滴,以降低计算成本并保持喷雾演化的基本特征和动力学。显示了本方法捕获了理想化和现实的柴油和燃气轮机燃烧器中液体雾化的复杂碎片过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号