首页> 外文会议>15th European workshop on modern developments and applications in microbean analysis, 7th meeting of the International Union of Microbean Analysis Societies >QUANTITATIVE EPMA COMPOSITIONAL MAPPING OF NWA 2995: CHARACTERISATION AND PETROLOGIC INTERPRETATION OF MAFIC CLASTS
【24h】

QUANTITATIVE EPMA COMPOSITIONAL MAPPING OF NWA 2995: CHARACTERISATION AND PETROLOGIC INTERPRETATION OF MAFIC CLASTS

机译:NWA 2995的定量EPMA组成映射:铁基碎屑的表征和岩石学解释

获取原文
获取原文并翻译 | 示例

摘要

We present fully quantitative compositional maps of lunar meteorite NWA 2995 using electron microprobe stage mapping, and compare selected clast mineralogy and chemistry. NWA 2995 is a feldspathic fragmental breccia containing anorthosite, norite, olivine basalt, subophitic basalt, gabbro, KREEP-like basalt, granulitic and glassy impact melts, coarse-grained mineral fragments, Fe-Ni metal, and glassy matrix, and has previously been analysed by bulk methods instrumental neutron activation analysis (INAA) and fused-bead electron probe microanalysis (EPMA) [1,2]. The JEOL JXA-8200 electron microprobe at Washington University, with JEOL and Probe Software operating systems was used to acquire backscattered-electron (BSE) and wavelength-dispersive (WDS) X-ray maps, and point analyses as outlined in [3]. The CalcImage programme is used to perform a full φ(pz) matrix correction for each pixel according to C = k * ZAF, where C is the concentration, k is the background-corrected X-ray sample intensity relative to a calibration standard, and factors Z, A, and F correct for matrix effects. The mean atomic number (MAN) correction is based on the WDS standardisation and is part of the ZAF iteration. The resulting maps contain a complete elemental analysis at each pixel, and are used for further analysis using Golden Software Surfer, Matlab, and ENVI software packages. A "slab" of NWA 2995 approximately 19x11 mm was mapped at 15 kV and 100 nA probe current, using dwell times of 25 - 50 msec at 1024x1024 pixel resolution and stage step size of 2-7 µm per pixel, with run times of 16 - 24 hours. Data were collected in two passes of 5 WDS elements each, to obtain a 10 element data set of 10242 fully quantitative analyses per map. These analyses were classified by assignment to mineral phase categories and used to calculate the modal abundance and composition of olivine, low- and high-Ca pyroxene, plagioclase, ilmenite, and spinel. Mineral classification maps for three mafic clasts B, G, and H are shown in Fig. 1. A density-corrected bulk composition was calculated for each clast using the measured modal abundance, elemental composition, and an appropriate phase density. Depending on modal abundance, each phase represents from 10~3 -105 quantitative analyses. All compositional data are detailed in the upper part of Table 1, where the density-corrected bulk composition of each clast is compared with: (a) bulk data for NWA 2995 obtained from large area maps over most of the slab (maps 1&2); (b) the matrix data, which is representative of the slab with clasts subtracted; and (c) with the EPMA fused-bead analysis of [2]. The modal proportions of minerals in the clasts, and their mineral end-member representation are listed in the lower part of Table 1. Clasts B and G are sub-ophitic olivine basalts, and clast H is an ophitic olivine gabbro. Clast B contains subhedral olivine of two distinct compositions, low-and high-Ca pyroxene, ilmenite, and spinel, and has a basaltic composition with comparatively high-Fe content. Clast G contains olivine, low-Ca pyroxene, plagioclase, and spinel. Clast H contains low- and high-Ca pyroxene, plagioclase, minor olivine, and has a relatively aluminous composition. There is excellent agreement between the matrix data determined by compositional mapping and the fused-bead EPMA data acquired previously, indicating that both techniques can be used to accurately measure the bulk composition of meteorites as represented by subsampled areas. A main advantage of quantitative EPMA compositional mapping is in comparison of areas representing point analyses, phases, and lithic regions, in addition to the non-destructive nature of EPMA analysis. This advantage can be used to compare clast and matrix composition, characterise mineral zoning, and to determine the abundance of mineral fragments and glass, for example. In addition to treatment of map data using fully quantified concentrations, the procedure outlined here can be used to characterise samples based on the classification definitions developed on an initial set of maps, rather than requiring intensive inspection of each new map.
机译:我们使用电子探针阶段图谱展示了月球陨石NWA 2995的完全定量组成图,并比较了所选择的克拉斯特矿物学和化学性质。 NWA 2995是一种长石碎屑角砾岩,包含钙长石,黑铁矿,橄榄石玄武岩,亚次生玄武岩,辉长岩,KREEP状玄武岩,粒状和玻璃状冲击熔体,粗粒矿物碎片,Fe-Ni金属和玻璃状基质,以前曾被使用过通过批量方法分析仪器中子活化分析(INAA)和熔珠电子探针微分析(EPMA)[1,2]。华盛顿大学的JEOL JXA-8200电子微探针,搭配JEOL和Probe Software操作系统,用于获取反向散射电子(BSE)和波长色散(WDS)X射线图,以及点分析,如[3]中所述。 CalcImage程序用于根据C = k * ZAF对每个像素执行完整的φ(pz)矩阵校正,其中C是浓度,k是相对于校准标准的经背景校正的X射线样品强度,并且Z,A和F因子可校正矩阵效应。平均原子序数(MAN)校正基于WDS标准化,并且是ZAF迭代的一部分。生成的地图在每个像素处包含完整的元素分析,并使用Golden Software Surfer,Matlab和ENVI软件包进行进一步分析。在15 kV和100 nA探针电流下,将NWA 2995的“平板”绘制为15 kV和100 nA探针电流,在1024x1024像素分辨率下使用25-50毫秒的驻留时间,每个像素的阶段步长为2-7 µm,运行时间为16 - 24小时。两次收集数据,每个过程包含5个WDS元素,以获取每个图谱包含1024个完全定量分析的10个元素数据集。这些分析按矿物相类别分类,用于计算橄榄石,低钙和高钙辉石,斜长石,钛铁矿和尖晶石的模态丰度和组成。三种镁铁矿块B,G和H的矿物分类图如图1所示。使用测得的模态丰度,元素组成和适当的相密度,为每块矿块计算了密度校正的体积组成。取决于模态丰度,每个阶段代表10〜3 -105个定量分析。表1的上部详细列出了所有成分数据,其中将每块碎屑的密度校正后的总体成分与以下数据进行了比较:(a)从大部分板块的大面积图(图1和图2)获得的NWA 2995的批量数据; (b)矩阵数据,该数据代表板减去了板块; (c)用[2]的EPMA熔珠分析。表1的下部列出了这些碎屑中矿物的模态比例及其矿物末尾成分的表示形式。碎屑B和G是橄榄岩下橄榄石玄武岩,碎屑H是橄榄石辉长岩。碎屑B包含具有两种不同成分的低面橄榄石橄榄石,即低钙和高钙辉石,钛铁矿和尖晶石,并且具有铁含量相对较高的玄武质组成。 Clast G包含橄榄石,低钙辉石,斜长石和尖晶石。 Clast H包含低钙和高钙的辉石,斜长石,少量橄榄石,并且具有相对铝的成分。通过成分映射确定的基质数据与先前获取的熔珠EPMA数据之间存在极好的一致性,这表明这两种技术都可以用来精确测量以二次采样区域表示的陨石的整体组成。定量EPMA成分映射的主要优势是,除了具有EPMA分析的非破坏性特性之外,还可以比较代表点分析,相和岩性区域的面积。例如,此优势可用于比较碎屑和基质的成分,表征矿物分区,并确定矿物碎片和玻璃的含量。除了使用完全定量的浓度处理地图数据外,此处概述的过程还可用于基于在一组初始地图上开发的分类定义来表征样品,而无需对每个新地图进行深入检查。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号