...
首页> 外文期刊>Journal of the American Chemical Society >Strong Surface Hydration and Salt Resistant Mechanism of a New Nonfouling Zwitterionic Polymer Based on Protein Stabilizer TMAO
【24h】

Strong Surface Hydration and Salt Resistant Mechanism of a New Nonfouling Zwitterionic Polymer Based on Protein Stabilizer TMAO

机译:基于蛋白质稳定剂TMAO的新型非污染两性离子聚合物的强表面水化和耐盐机理

获取原文
获取原文并翻译 | 示例
           

摘要

Zwitterionic polymers exhibit excellent nonfouling performance due to their strong surface hydrations. However, salt molecules may severely reduce the surface hydrations of typical zwitterionic polymers, making the application of these polymers in real biological and marine environments challenging. Recently, a new zwitterionic polymer brush based on the protein stabilizer trimethylamine N-oxide (TMAO) was developed as an outstanding nonfouling material. Using surface-sensitive sum frequency generation (SFG) vibrational spectroscopy, we investigated the surface hydration of TMAO polymer brushes (pTMAO) and the effects of salts and proteins on such surface hydration. It was discovered that exposure to highly concentrated salt solutions such as seawater only moderately reduced surface hydration. This superior resistance to salt effects compared to other zwitterionic polymers is due to the shorter distance between the positively and negatively charged groups, thus a smaller dipole in pTMAO and strong hydration around TMAO zwitterion. This results in strong bonding interactions between the O~- in pTMAO and water, and weaker interaction between O~- and metal cations due to the strong repulsion from the N~+ and hydration water. Computer simulations at quantum and atomistic scales were performed to support SFG analyses. In addition to the salt effect, it was discovered that exposure to proteins in seawater exerted minimal influence on the pTMAO surface hydration, indicating complete exclusion of protein attachment. The excellent nonfouling performance of pTMAO originates from its extremely strong surface hydration that exhibits effective resistance to disruptions induced by salts and proteins.
机译:由于其强大的表面保湿,两性离子聚合物具有出色的非滤光性能。然而,盐分子可能严重降低典型的两性离子聚合物的表面水合,在真正的生物和海洋环境中挑战这些聚合物的应用。最近,基于蛋白质稳定剂三甲胺N-氧化物(TMAO)的新的两性离子聚合物刷作为出色的非滤光材料。使用表面敏感和频率产生(SFG)振动光谱,我们研究了TMAO聚合物刷(PTMAO)的表面水合,以及盐和蛋白质对这种表面水化的影响。已发现暴露于高度浓缩的盐溶液,例如海水仅适度降低表面水合。与其他两性离子聚合物相比,这种优异的抗盐效应是由于带负电荷和带负电的基团之间的距离较短,因此PTMAO中的较小偶极子和TMAO两包末端的强水合。这导致O〜 - 在PTMAO和水中的强键合相互作用,并且O〜 - 金属阳离子之间的相互作用较弱,由于N〜+和水合水的强烈排斥。进行量子和原子尺度的计算机模拟以支持SFG分析。除了盐效应外,还发现,海水中的蛋白质暴露对PTMAO表面水合产生最小的影响,表明完全排除蛋白质附着。 PTMAO的出色非污染性能来自其极强的表面水合,对盐和蛋白质诱导的破坏具有有效抗性。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2021年第40期|16786-16795|共10页
  • 作者单位

    Department of Chemistry and Applied Physics Program University of Michigan Ann Arbor Michigan 48109 United States;

    Department of Chemistry University of Michigan Ann Arbor Michigan 48109 United States;

    Department of Chemistry University of Michigan Ann Arbor Michigan 48109 United States;

    Department of Chemistry University of Michigan Ann Arbor Michigan 48109 United States;

    Department of Chemical Engineering University of Washington Seattle Washington 98195 United States;

    Department of Chemical Engineering Howard University Washington D.C. 20059 United States;

    Department of Chemical Engineering Howard University Washington D.C. 20059 United States;

    Department of Chemical Engineering University of Washington Seattle Washington 98195 United States;

    Department of Chemical Engineering Howard University Washington D.C. 20059 United States;

    Meinig School of Biomedical Engineering Cornell University Ithaca New York 14853 United States;

    Department of Chemistry and Applied Physics Program University of Michigan Ann Arbor Michigan 48109 United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号