...
首页> 外文期刊>Journal of the American Chemical Society >Tracking Charge Transfer to Residual Metal Clusters in Conjugated Polymers for Photocatalytic Hydrogen Evolution
【24h】

Tracking Charge Transfer to Residual Metal Clusters in Conjugated Polymers for Photocatalytic Hydrogen Evolution

机译:用于光催化氢气进化的共轭聚合物中的残留金属簇的跟踪电荷转移

获取原文
获取原文并翻译 | 示例
           

摘要

Semiconducting polymers are versatile materials for solar energy conversion and have gained popularity as photo-catalysts for sunlight-driven hydrogen production. Organic polymers often contain residual metal impurities such as palladium (Pd) clusters that are formed during the polymerization reaction, and there is increasing evidence for a catalytic role of such metal clusters in polymer photocatalysts. Using transient and operando optical spectroscopy on nanoparticles of F8BT, P3HT, and the dibenzo[b,d]thiophene sulfone homopolymer P10, we demonstrate how differences in the time scale of electron transfer to Pd clusters translate into hydrogen evolution activity optima at different residual Pd concentrations. For F8BT nanoparticles with common Pd concentrations of >1000 ppm (>0.1 wt %), we find that residual Pd clusters quench photogenerated excitons via energy and electron transfer on the femto-nanosecond time scale, thus outcompeting reductive quenching. We spectroscopically identify reduced Pd clusters in our F8BT nanoparticles from the microsecond time scale onward and show that the predominant location of long-lived electrons gradually shifts to the F8BT polymer when the Pd content is lowered. While a low yield of long-lived electrons limits the hydrogen evolution activity of F8BT, P10 exhibits a substantially higher hydrogen evolution activity, which we demonstrate results from higher yields of long-lived electrons due to more efficient reductive quenching. Surprisingly, and despite the higher performance of P10, long-lived electrons reside on the P10 polymer rather than on the Pd clusters in P10 particles, even at very high Pd concentrations of 27000 ppm (2.7 wt %). In contrast, long-lived electrons in F8BT already reside on Pd clusters before the typical time scale of hydrogen evolution. This comparison shows that P10 exhibits efficient reductive quenching but slow electron transfer to residual Pd clusters, whereas the opposite is the case for F8BT. These findings suggest that the development of even more efficient polymer photocatalysts must target materials that combine both rapid reductive quenching and rapid charge transfer to a metal-based cocatalyst.
机译:半导体聚合物是太阳能转换的通用材料,并且普及作为用于阳光驱动的氢气产生的光催化剂。有机聚合物通常含有在聚合反应期间形成的残留金属杂质,例如形成的钯(Pd)簇,并且在聚合物光催化剂中这种金属簇的催化作用增加了递增的证据。在F8BT,P3HT和二苯甲苯甲酚酰胺均聚物P10的纳米颗粒上使用瞬态和Operando光谱检查,我们证明了电子转移到PD簇的时间等级的差异转化为不同残留的PD的氢进化活动Optima浓度。对于具有常见PD浓度> 1000ppm(> 0.1wt%)的F8BT纳米颗粒,发现残留的PD簇通过能量和电子转移在毫微微纳秒时刻度淬灭光敏激子,因此脱颖而出。我们光谱识别来自微秒级尺度的F8BT纳米颗粒中的减少的PD簇,并表明当PD含量降低时,长寿命的电子的主要位置逐渐移位到F8BT聚合物。虽然低寿命的电子产生了F8BT的氢进化活性,但P10表现出基本上更高的氢进化活性,这是由于更有效的还原淬火导致的长寿命电子产生的结果。令人惊讶的是,尽管P10的性能较高,但是长寿电子在P10聚合物上而不是在P10颗粒中的PD簇上,即使在27000ppm的非常高的Pd浓度(2.7wt%)。相反,F8BT中的长寿电子已经驻留在氢气进化的典型时间尺度之前的PD簇上。该比较表明,P10表现出高效的还原淬火,但慢电子转移到残余PD簇,而F8BT的情况相反。这些发现表明,甚至更有效的聚合物光催化剂的开发必须靶向结合快速还原淬火和快速电荷转移到金属基助催化剂的材料。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2020年第34期|14574-14587|共14页
  • 作者单位

    Department of Chemistry and Centre for Processable Electronics Imperial College London London W12 OBZ U.K.;

    Department of Chemistry and Centre for Processable Electronics Imperial College London London W12 OBZ U.K.;

    Department of Physical Sciences and Engineering KAUST Solar Centre (KSC) 23955 Thuwal Saudi Arabia;

    Department of Chemistry and Materials Innovation Factory University of Liverpool Liverpool L7 3NY U.K.;

    Department of Chemistry and Centre for Processable Electronics Imperial College London London W12 OBZ U.K.;

    Department of Chemistry and Centre for Processable Electronics Imperial College London London W12 OBZ U.K.;

    National Synchrotron Radiation Research Center Hsinchu 30076 Taiwan;

    Department of Chemistry and Centre for Processable Electronics Imperial College London London W12 OBZ U.K.;

    Department of Chemistry and Centre for Processable Electronics Imperial College London London W12 OBZ U.K.;

    Department of Chemistry and Centre for Processable Electronics Imperial College London London W12 0BZ U.K.;

    Department of Chemistry and Materials Innovation Factory University of Liverpool Liverpool L7 3NY U.K.;

    Department of Chemistry and Materials Innovation Factory University of Liverpool Liverpool L7 3NY U.K.;

    Department of Physical Sciences and Engineering KAUST Solar Centre (KSC) 23955 Thuwal Saudi Arabia;

    Department of Chemistry and Centre for Processable Electronics Imperial College London London W12 0BZ UK.;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号