...
首页> 外文期刊>Journal of the American Chemical Society >Molecular-Scale Ligand Effects in Small Gold-Thiolate Nanoclusters
【24h】

Molecular-Scale Ligand Effects in Small Gold-Thiolate Nanoclusters

机译:小型硫醇盐纳米簇的分子尺度配体效应

获取原文
获取原文并翻译 | 示例
           

摘要

Because of the small size and large surface area of thiolate-protected Au nanoclusters (NCs), the protecting ligands are expected to play a substantial role in modulating the structure and properties, particularly in the solution phase. However, little is known on how thiolate ligands explicitly modulate the structural properties of the NCs at atomic level, even though this information is critical for predicting the performance of Au NCs in application settings including as a catalyst interacting with small molecules and as a sensor interacting with biomolecular systems. Here, we report a combined experimental and theoretical study, using synchrotron X-ray spectroscopy and quantum mechanics/molecular mechanics simulations, that investigates how the protecting ligands impact the structure and properties of small Au-18(SR)(14) NCs. Two representative ligand types, smaller aliphatic cyclohexanethiolate and larger hydrophilic glutathione, are selected, and their structures are followed experimentally in both solid and solution phases. It was found that cyclohexanethiolate ligands are significantly perturbed by toluene solvent molecules, resulting in structural changes that cause disorder on the surface of Au-18(SR)(14) NCs. In particular, large surface cavities in the ligand shell are created by interactions between toluene and cyclohexanethiolate. The appearance of these small molecule-accessible sites on the NC surface demonstrates the ability of Au NCs to act as a catalyst for organic phase reactions. In contrast, glutathione ligands encapsulate the Au NC core via intermolecular interactions, minimizing structural changes caused by interactions with water molecules. The much better protection from glutathione ligands imparts a rigidified surface and ligand structure, making the NCs desirable for biomedical applications due to the high stability and also offering a structural-based explanation for the enhanced photoluminescence often reported for glutathione-protected Au NCs.
机译:由于硫醇盐保护的金纳米簇(NC)的体积小且表面积大,因此保护配体有望在调节结构和性能方面发挥重要作用,尤其是在溶液相中。但是,关于硫醇盐配体如何在原子水平上显着调节NC的结构特性,人们知之甚少,即使该信息对于预测Au NC在应用场合的性能至关重要,包括作为催化剂与小分子相互作用以及作为传感器相互作用的情况。与生物分子系统。在这里,我们报告使用同步加速器X射线光谱和量子力学/分子力学模拟的实验和理论相结合的研究,调查了保护配体如何影响小型Au-18(SR)(14)NC的结构和性能。选择了两种代表性的配体类型,较小的脂族环己硫醇盐和较大的亲水性谷胱甘肽,并且在固相和溶液相中均通过实验跟踪了它们的结构。发现环己烷硫醇盐配体被甲苯溶剂分子显着干扰,导致结构变化,导致Au-18(SR)(14)NCs表面无序。尤其是,配体壳中的大表面空腔是由甲苯和环己硫醇盐之间的相互作用产生的。这些小分子可及位置在NC表面的出现证明了Au NCs可以用作有机相反应的催化剂。相反,谷胱甘肽配体通过分子间相互作用封装了Au NC核,从而最大程度地减少了与水分子相互作用引起的结构变化。对谷胱甘肽配体的更好保护赋予了刚性的表面和配体结构,由于其高稳定性,使NC成为生物医学应用的理想之选,并为基于谷胱甘肽保护的Au NC经常报道的增强的光致发光提供了基于结构的解释。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2018年第45期|15430-15436|共7页
  • 作者单位

    Univ Barcelona, Dept Quim Inorgan & Organ, Seccio Quim Organ, Marti & Franques 1, E-08028 Barcelona, Spain;

    Univ Barcelona, Inst Quim Teor & Computac IQTCUB, Marti & Franques 1, E-08028 Barcelona, Spain;

    Natl Univ Singapore, Dept Chem & Biomol Engn, 10 Kent Ridge Crescent, Singapore 119260, Singapore;

    Norwegian Univ Sci & Technol, Dept Phys, NO-7491 Trondheim, Norway;

    Dalhousie Univ, Dept Chem, Halifax, NS B3H 4R2, Canada;

    ICREA, Passeig Lluis Companys 23, Barcelona 08020, Spain;

    Tampere Univ Technol, Lab Phys, POB 692, FI-33101 Tampere, Finland;

    Carnegie Mellon Univ, Dept Chem, 4400 5th Ave, Pittsburgh, PA 15213 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号