...
首页> 外文期刊>Journal of the American Chemical Society >Point of Anchor: Impacts on Interfacial Charge Transfer of Metal Oxide Nanoparticles
【24h】

Point of Anchor: Impacts on Interfacial Charge Transfer of Metal Oxide Nanoparticles

机译:锚点:对金属氧化物纳米粒子的界面电荷转移的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Photoinduced charge transfer across the metal oxide-organic ligand interface plays a key role in the diverse applications of metal oxide nanomaterialsanostructures, such as photovoltaics, photocatalysis, and optoelectronics. Thus far, most studies are focused on molecular engineering of the organic chromophores, where the charge-transfer properties have been found to dictate the photo absorption efficiency and eventual device performance. Yet, as the chromophores are mostly bound onto the metal oxide surfaces by hydroxyl or carboxyl anchors, the impacts of the bonding interactions at the metal oxide ligand interface on interfacial charge transfer have remained largely unexplored. Herein, acetylene derivatives are demonstrated as effective surface capping ligands for metal oxide nanoparticles, as exemplified with TiO2, RuO2, and ZnO. Experimental studies and first principles calculations suggest the formation of M-O-C equivalent to C- core-ligand linkages that lead to effective interfacial charge delocalization, in contrast to hopping/tunneling by the conventional M-O-CO- interfacial bonds in the carboxyl-capped counterparts. This leads to the generation of an interfacial state within the oxide bandgap and much enhanced sensitization of the nanoparticle photoluminescence emissions as well as photocatalytic activity, as manifested in the comparative studies with TiO2 nanoparticles functionalized with ethynylpyrene and pyrenecarboxylic acid. These results highlight the significance of the unique interfacial bonding chemistry by acetylene anchoring group in facilitating efficient charge transfer through the oxide-ligand interfacial linkage and hence the fundamental implication in their practical applications.
机译:跨金属氧化物-有机配体界面的光诱导电荷转移在金属氧化物纳米材料/纳米结构的各种应用(例如光伏,光催化和光电)中起关键作用。迄今为止,大多数研究都集中在有机发色团的分子工程上,其中已发现电荷转移性质决定了光吸收效率和最终的器件性能。然而,由于发色团主要通过羟基或羧基锚定键结合在金属氧化物表面上,因此在金属氧化物配体界面处的键合相互作用对界面电荷转移的影响仍未得到充分研究。在本文中,乙炔衍生物被证明是金属氧化物纳米颗粒的有效表面覆盖配体,例如以TiO2,RuO2和ZnO为例。实验研究和第一原理计算表明,与C-核心-配体键等效的M-O-C的形成导致有效的界面电荷离域,这与羧基封端的对应物中常规M-O-CO-界面键的跳跃/隧穿作用相反。如乙炔基py和pyr羧酸官能化的TiO2纳米颗粒的比较研究所证明的,这导致在氧化物带隙内产生界面态,并大大增强了纳米颗粒光致发光发射的敏化性以及光催化活性。这些结果凸显了乙炔锚固基团独特的界面键合化学的意义,其通过氧化物-配体界面键促进了有效的电荷转移,因此在其实际应用中具有根本意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号