...
首页> 外文期刊>Journal of the American Chemical Society >Molecular Control of Recombination Dynamics in Dye-Sensitized Nanocrystalline TiO_2 Films: Free Energy vs Distance Dependence
【24h】

Molecular Control of Recombination Dynamics in Dye-Sensitized Nanocrystalline TiO_2 Films: Free Energy vs Distance Dependence

机译:染料敏化的纳米TiO_2薄膜中复合动力学的分子控制:自由能与距离的关系。

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper we address the dependence of the charge recombination dynamics in dye-sensitized, nanocrystalline TiO_2 films upon the properties of the sensitizer dye employed. In particular we focus upon dependence of the charge recombination kinetics upon the dye oxidation potential E~0(D~+/D), determined electrochemically, and the spatial separation r of the dye cation HOMO orbital from the metal oxide surface, determined by semiempirical calculations. Our studies employed a series of ruthenium bipyridyl dyes in addition to porphyrin and phthalocyanine dyes. A strong correlation is observed between the recombination dynamics and the spatial separation r, with variation in r by 3 A resulting in a more than 10-fold change in the recombination half-time t_(50%). This correlation is found to be in agreement with electron tunneling theory, t_(50%) ∝ EXP(-βR) with β = 0.95 ± 0.2 a~(-1). In contrast, the recombination dynamics were found to be relatively insensitive to variations in E~0(D~+/D), indicative of the recombination reaction lying near the peak of the Marcus free energy curve, ΔG ~ λ, and with λ ~ 0.8 eV. A correlation is also observed between the recombination half-time and the temporal shape of the kinetics, with faster recombination dynamics being more dispersive (less monoexponential). Comparison with numerical Monte Carlo type simulations suggests this correlation is attributed to a shift from fast recombination dynamics primarily limited by dispersive electron transport within the metal oxide film to slower dynamics primarily limited by the interfacial electron-transfer reaction. We conclude that the primary factor controlling the charge recombination dynamics in dye-sensitized, nanocrystalline TiO_2 films is the spatial separation of the dye cation from the electrode surface. In particular, we show that for the Ru(dcbpy)_2NCS_2 dye series, the use of X = NCS rather than X = CN results in a 2 a shift in the dye cation HOMO orbital away from the electrode surface, causing a 7-fold retardation of the recombination dynamics, resulting in the remarkably slow recombination dynamics observed for this sensitizer dye.
机译:在本文中,我们解决了染料敏化的纳米晶TiO_2薄膜中电荷复合动力学对所用敏化染料性质的依赖性。特别地,我们着重于电荷重组动力学对通过电化学确定的染料氧化电位E〜0(D〜+ / D)的依赖性以及通过半经验确定的染料阳离子HOMO轨道与金属氧化物表面的空间间距r计算。除了卟啉和酞菁染料外,我们的研究还使用了一系列钌联吡啶染料。在重组动力学和空间间隔r之间观察到很强的相关性,r的变化为3 A,导致重组半衰期t_(50%)的变化超过10倍。发现这种相关性与电子隧穿理论t_(50%)∝ EXP(-βR)(β= 0.95±0.2 a〜(-1))一致。相比之下,发现重组动力学对E〜0(D〜+ / D)的变化相对不敏感,这表明重组反应位于马库斯自由能曲线的峰值ΔG〜λ处,并且在λ〜处。 0.8 eV。还观察到重组半时间与动力学的时间形状之间的相关性,更快的重组动力学更分散(单指数较少)。与数值蒙特卡洛类型模拟的比较表明,这种相关性归因于从主要由金属氧化物膜内的分散电子传输所限制的快速重组动力学转变为主要受界面电子转移反应所限制的较慢动力学的转变。我们得出结论,控制染料敏化的纳米晶TiO_2薄膜中电荷复合动力学的主要因素是染料阳离子与电极表面的空间分离。特别是,我们显示出对于Ru(dcbpy)_2NCS_2染料系列,使用X = NCS而不是X = CN会导致染料阳离子HOMO轨道偏离电极表面2 a的位移,从而导致7倍重组动力学的阻滞,导致这种敏化剂染料的重组动力学显着降低。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2004年第16期|p. 5225-5233|共9页
  • 作者单位

    Centre for Electronic Materials and Device, Departments of Chemistry, Imperial College London, Exhibition Road, SW7 2AZ, London, U.K.;

    Centre for Electronic Materials and Device, Departments ofPhysics, Imperial College London, Exhibition Road, SW7 2AZ, London, U.K.;

    Laboratory for Photonics and Interfaces, Institute of Physical Chemistry, Swiss Federal Institute of Technology, CH-1015 Lausane, Switzerland;

    Laboratory for Photonics and Interfaces, Institute of Physical Chemistry, Swiss Federal Institute of Technology, CH-1015 Lausane, Switzerland;

    Departments of Physics, Imperial College London, Exhibition Road, SW7 2AZ, London, U.K.;

    Centre for Electronic Materials and Device, Departments of Chemistry, Imperial College London, Exhibition Road, SW7 2AZ, London, U.K.;

    Centre for Electronic Materials and Device, Departments of Chemistry, Imperial College London, Exhibition Road, SW7 2AZ, London, U.K.;

    Centre for Electronic Materials and Device, Departments of Chemistry, Imperial College London, Exhibition Road, SW7 2AZ, London, U.K.;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号