...
首页> 外文期刊>Journal of the American Chemical Society >Solvent Effects on the Oxidation of Ru~Ⅳ=O to O=Ru~Ⅳ=O by MnO_4~- · Hydrogen-Atom versus Oxygen-Atom Transfer
【24h】

Solvent Effects on the Oxidation of Ru~Ⅳ=O to O=Ru~Ⅳ=O by MnO_4~- · Hydrogen-Atom versus Oxygen-Atom Transfer

机译:MnO_4〜-·氢原子与氧原子转移对Ru〜Ⅳ= O氧化为O = Ru〜Ⅳ= O的溶剂影响

获取原文
获取原文并翻译 | 示例
           

摘要

The kinetics of the oxidation of trans-[Ru~Ⅳ(tmc)(O)(solv)]~(2+) to trans-[Ru~Ⅵ(tmc)(O)_2]~(2+) (tmc is 1,4,8,-11-tetramethyl-1,4,8,11-tetraazacyclotetradecane, a tetradentate macrocyclic tertiary amine ligand; solv = H_2O or CH_3CN) by MnO_4~- have been studied in aqueous solutions and in acetonitrile. In aqueous solutions the rate law is -d[MnO_4]/dt =k_(H_2O)[Ru~Ⅳ][MnO_4~-] = (k_x + (ky)/(k_a)[H~+])[Ru~Ⅳ][MnO_4~-], k_x = (1.49 ± 0.09) × 10~1 M~(-1) s~(-1) and k_y = (5.72 ± 0.29) × 10~4 M~(-1) s~(-1) at 298.0 K and / = 0.1 M. The terms k_x and k_y are proposed to be the rate constants for the oxidation of Ru~Ⅳ by MnO_4~- and HMnO_4, respectively, and K_a is the acid dissociation constant of HMnO_4· At [H~+] = I= 0.1 M, ΔH and ΔS are (9.6 ± 0.6) kcal mol~(-1) and -(18 ± 2) cal mol~(-1) K~(-1), respectively. The reaction is much slower in D_2O, and the deuterium isotope effects are k_x/k_x~D = 3.5 ± 0.1 and k_v/k_y~D = 5.0 ± 0.3. The reaction is also noticeably slower in H_2~(18)O, and the oxygen isotope effect is k_(H_2)~(16)o/k_(H_2)~(18)_o = 1.30 ± 0.07.~(18)O-labeled studies indicate that the oxygen atom gained by Ru~Ⅳ comes from water and not from KMnO_4. These results are consistent with a mechanism that involves initial rate-limiting hydrogen-atom abstraction by MnO_4~- from coordinated water on RuⅣ. In acetonitrile the rate law is -d[MnO_4~-]/dt = k_(CH_3CN)[Ru~Ⅳ][MnO_4~-], k_(CH_3CN) = 1.95 ± 0.08 M~(-1) s~(-1) at 298.0 K and I= 0.1 M. ΔH and ΔS are (12.0 ± 0.3) kcal mol~(-1) and -(17 ± 1) cal mol~(-1) K~(-1), respectively, ~(18)Olabeled studies show that in this case the oxygen atom gained by Ru~Ⅳ comes from MnO_4~-, consistent with an oxygen-atom transfer mechanism.
机译:反式[Ru〜Ⅳ(tmc)(O)(solv)]〜(2+)氧化为反式[Ru〜Ⅵ(tmc)(O)_2]〜(2+)的动力学已经在水溶液和乙腈中研究了由MnO_4〜(1,4,8,-11-tetramethyl-1,4,8,11-四氮杂环十四烷,一种四齿大环叔胺配体; solv = H_2O或CH_3CN)。在水溶液中的速率定律是-d [MnO_4] / dt = k_(H_2O)[Ru〜Ⅳ] [MnO_4〜-] =(k_x +(ky)/(k_a)[H〜+])[Ru〜Ⅳ ] [MnO_4〜-],k_x =(1.49±0.09)×10〜1 M〜(-1)s〜(-1)和k_y =(5.72±0.29)×10〜4 M〜(-1)s〜 (-1)在298.0 K和/ = 0.1 M时。提出k_x和k_y项分别是MnO_4〜-和HMnO_4氧化Ru〜Ⅳ的速率常数,而K_a是HMnO_4的酸解离常数·在[H〜+] = I = 0.1 M时,ΔH和ΔS为(9.6±0.6)kcal mol〜(-1)和-(18±2)cal mol〜(-1)K〜(-1),分别。在D_2O中,反应要慢得多,氘的同位素效应是k_x / k_x〜D = 3.5±0.1和k_v / k_y〜D = 5.0±0.3。在H_2〜(18)O中,反应也明显较慢,并且氧同位素效应为k_(H_2)〜(16)o / k_(H_2)〜(18)_o = 1.30±0.07。〜(18)O-标记研究表明,Ru〜Ⅳ获得的氧原子来自水,而不是KMnO_4。这些结果与一种机制有关,该机制涉及通过RuO上配位水中MnO_4〜-初始限速氢原子的提取。在乙腈中,速率定律为-d [MnO_4〜-] / dt = k_(CH_3CN)[Ru〜Ⅳ] [MnO_4〜-],k_(CH_3CN)= 1.95±0.08 M〜(-1)s〜(-1 )在298.0 K和I = 0.1 M时.ΔH和ΔS分别为(12.0±0.3)kcal mol〜(-1)和-(17±1)cal mol〜(-1)K〜(-1)〜 (18)加标签的研究表明,在这种情况下,Ru〜Ⅳ获得的氧原子来自MnO_4〜-,这与氧原子转移机理是一致的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号