...
首页> 外文期刊>Journal of the American Chemical Society >Electronic Structure of the Peroxy Intermediate and Its Correlation to the Native Intermediate in the Multicopper Oxidases: Insights into the Reductive Cleavage of the O-O Bond
【24h】

Electronic Structure of the Peroxy Intermediate and Its Correlation to the Native Intermediate in the Multicopper Oxidases: Insights into the Reductive Cleavage of the O-O Bond

机译:在多铜氧化酶中过氧中间体的电子结构及其与天然中间体的关系:对O-O键的还原裂解的见解。

获取原文
获取原文并翻译 | 示例
           

摘要

The multicopper oxidases (MCOs) utilize a blue type 1 (T1) copper site and a trinuclear Cu cluster composed of a type 2 (T2) and a binuclear type 3 (T3) site that together catalyze the four-electron reduction of O_2 to H_2O. Reaction of the fully reduced enzyme with O_2 proceeds via two sequential two-electron steps generating the peroxy intermediate (PI) and the native intermediate (NI). While a detailed description of the geometric and electronic structure of Nl has been developed, this has been more elusive for PI largely due to the diamagnetic nature of its ground state. Density functional theory (DFT) calculations have been used to correlate to spectroscopic data to generate a description of the geometric and electronic structure of PI. A highly conserved carboxylate residue near the T2 site is found to play a critical role in stabilizing the PI structure, which induces oxidation of the T2 and one T3 Cu center and strong superexchange stabilization via the peroxide bridge, allowing irreversible binding of O_2 at the trinuclear Cu site. Correlation of PI to Nl is achieved using a two-dimensional potential energy surface generated to describe the catalytic two-electron reduction of the peroxide O-O bond by the MCOs. It is found that the reaction is thermodynamically driven by the relative stability of Nl and the involvement of the simultaneous two-electron-transfer process. A low activation barrier (calculated ~5-6 kcal/mol and experimental ~3-5 kcal/mol) is produced by the triangular topology of the trinuclear Cu cluster site, as this symmetry provides good donor-acceptor frontier molecular orbital (FMO) overlap. Finally, the O-O bond cleavage in the trinuclear Cu cluster can be achieved via either a proton-assisted or a proton-unassisted process, allowing the MCOs to function over a wide range of pH. It is found that while the proton helps to stabilize the acceptor O_2~(2-) σ~* orbital in the proton-assisted process for better donor-acceptor FMO overlap, the third oxidized Cu center in the trinuclear site assumes the role as a Lewis acid in the proton-unassisted process for similarly efficient O-O bond cleavage.
机译:多铜氧化酶(MCO)利用蓝色的1型(T1)铜位点和由2型(T2)和双核3型(T3)位点组成的三核Cu簇,它们共同催化O_2的四电子还原为H_2O 。完全还原的酶与O_2的反应通过两个连续的两个电子步骤进行,生成过氧中间体(PI)和天然中间体(NI)。虽然已经开发了对N1的几何和电子结构的详细描述,但是由于PI的基态的反磁性本质,这对于PI而言更加难以捉摸。密度泛函理论(DFT)计算已用于关联光谱数据,以生成对PI的几何和电子结构的描述。发现在T2位点附近的高度保守的羧酸盐残基在稳定PI结构中起关键作用,PI结构可诱导T2和一个T3 Cu中心的氧化,并通过过氧化物桥产生强大的超交换稳定性,从而使O_2在三核上不可逆地结合铜网站。使用二维势能表面来实现P1与N1的相关性,所述二维势能表面被生成以描述MCO对过氧化物O-O键的催化两电子还原。发现该反应是由N1的相对稳定性和同时的两个电子转移过程的参与热力学驱动的。三核铜团簇位点的三角形拓扑结构产生较低的活化势垒(计算值约为5-6 kcal / mol,实验值为3-5 kcal / mol),因为这种对称性提供了良好的供体-受体前沿分子轨道(FMO)交叠。最后,可以通过质子辅助或质子无辅助过程实现三核Cu簇中O-O键的裂解,从而使MCO在广泛的pH范围内起作用。发现在质子辅助过程中,质子有助于稳定受体O_2〜(2-)σ〜*轨道,以使供体-受体FMO更好地重叠,但三核位点的第三个氧化铜中心起着路易斯酸在质子无助过程中具有类似的OO键裂解效率。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2007年第43期|13127-13136|共10页
  • 作者单位

    Department of Chemistry, Stanford University, Stanford, California 94305;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号