...
首页> 外文期刊>Journal of the American Chemical Society >Hydration Dynamics and Time Scales of Coupled Water-Protein Fluctuations
【24h】

Hydration Dynamics and Time Scales of Coupled Water-Protein Fluctuations

机译:蛋白质波动耦合的水化动力学和时间尺度

获取原文
获取原文并翻译 | 示例
           

摘要

We report experimental and theoretical studies on water and protein dynamics following photoexcitation of apomyoglobin. Using site-directed mutation and with femtosecond resolution, we experimentally observed relaxation dynamics with a biphasic distribution of time scales, 5 and 87 ps, around the site Trp7. Theoretical studies using both linear response and direct nonequilibrium molecular dynamics (MD) calculations reproduced the biphasic behavior. Further constrained MD simulations with either frozen protein or frozen water revealed the molecular mechanism of slow hydration processes and elucidated the role of protein fluctuations. Observation of slow water dynamics in MD simulations requires protein flexibility, regardless of whether the slow Stokes shift component results from the water or protein contribution. The initial dynamics in a few picoseconds represents fast local motions such as reorientations and translations of hydrating water molecules, followed by slow relaxation involving strongly coupled water-protein motions. We observed a transition from one isomeric protein configuration to another after 10 ns during our 30 ns ground-state simulation. For one isomer, the surface hydration energy dominates the slow component of the total relaxation energy. For the other isomer, the slow component is dominated by protein interactions with the chromophore. In both cases, coupled water-protein motion is shown to be necessary for observation of the slow dynamics. Such biologically important water-protein motions occur on tens of picoseconds. One significant discrepancy exists between theory and experiment, the large inertial relaxation predicted by simulations but clearly absent in experiment. Further improvements required in the theoretical model are discussed.
机译:我们报道了对肌红蛋白光激发后水和蛋白质动力学的实验和理论研究。使用定点突变和飞秒分辨率,我们在Trp7周围实验观察到弛豫动力学,其时标分别为5 ps和87 ps的双相分布。使用线性响应和直接非平衡分子动力学(MD)计算的理论研究重现了两相行为。用冷冻蛋白质或冷冻水进行的进一步受限MD模拟揭示了缓慢水合过程的分子机制,并阐明了蛋白质波动的作用。在MD模拟中观察缓慢的水动力学需要蛋白质灵活性,而不管缓慢的斯托克斯位移分量是由水还是蛋白质的贡献所致。几皮秒内的初始动力学代表快速的局部运动,例如水化水分子的重新定向和平移,然后是缓慢的松弛,其中涉及到强耦合的水-蛋白质运动。在30 ns的基态仿真过程中,我们观察到10 ns后从一种异构蛋白构型过渡到另一种异构蛋白构型。对于一种异构体,表面水合能占总弛豫能的慢部分。对于其他异构体,慢速组分主要由蛋白质与生色团的相互作用所决定。在这两种情况下,水蛋白运动的耦合对于观察慢速动力学都是必要的。这种生物学上重要的水-蛋白质运动发生在几十皮秒内。理论与实验之间存在一个重大差异,即通过仿真预测的大惯性松弛,但实验中显然没有。讨论了理论模型中所需的进一步改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号