...
首页> 外文期刊>Journal of the American Chemical Society >Ultrafast and ultraslow oxygen atom transfer reactions between late metal centers
【24h】

Ultrafast and ultraslow oxygen atom transfer reactions between late metal centers

机译:晚期金属中心之间的超快和超慢氧原子转移反应

获取原文
获取原文并翻译 | 示例
           

摘要

Oxotrimesityliridium(V), (mes)(3)IrO (mes = 2,4,6-trimethylphenyl), and trimesityliridium(III), (mes)(3)Ir, undergo extremely rapid degenerate intermetal oxygen atom transfer at room temperature. At low temperatures, the two complexes conproportionate to form (mes)(3)IrOIr(mes)(3), the 2,6-dimethylphenyl analogue of which has been characterized crystallographically. Variable-temperature NMR measurements of the rate of dissociation of the mu-oxo dimer combined with measurements of the conproportionation equilibrium by low-temperature optical spectroscopy indicate that oxygen atom exchange between iridium(V) and iridium(III) occurs with a rate constant, extrapolated to 20 degrees C, of 5 x 10(7) M-1 s(-1). The oxotris(imido)osmium(VIII) complex (ArN)(3)OsO (Ar = 2,6-diisopropylphenyl) also undergoes degenerate intermetal atom transfer to its deoxy partner, (ArN)(3)Os. However, despite the fact that its metal-oxygen bond strength and reactivity toward triphenylphosphine are nearly identical to those of (mes)(3)IrO, the osmium complex (ArN)(3)OsO transfers its oxygen atom 12 orders of magnitude more slowly to (ArN)(3)Os than (mes)(3)IrO does to (mes)(3)Ir (k(OsOs) = 1.8 x 10(-5) M-1 s(-1) at 20 degrees C). Iridium-osmium cross-exchange takes place at an intermediate rate, in quantitative agreement with a Marcus-type cross relation. The enormous difference between the iridium-iridium and osmium-osmium exchange rates can be rationalized by an analogue of the inner-sphere reorganization energy. Both Ir(III) and Ir(V) are pyramidal and can form pyramidal iridium(IV) with little energetic cost in an orbitally allowed linear approach. Conversely, pyramidalization of the planar tris(imido)osmium(VI) fragment requires placing a pair of electrons in an antibonding orbital. The unique propensity of (mes)(3)IrO to undergo intermetal oxygen atom transfer allows it to serve as an activator of dioxygen in cocatalyzed oxidations, for example, acting with osmium tetroxide to catalyze the aerobic dihydroxylation of monosubstituted olefins and selective oxidation of allyl and benzyl alcohols.
机译:氧三茂铁(V),(mes)(3)IrO(mes = 2,4,6-三甲基苯基)和三苯甲基锂(III),(mes)(3)Ir在室温下经历极快的简并金属间氧原子转移。在低温下,这两种络合物成比例地形成(mes)(3)IrOIr(mes)(3),其2,6-二甲基苯基类似物已通过晶体学表征。对mu-oxo二聚体解离速率的可变温度NMR测量与通过低温光谱法测量的对比例平衡的测量结果表明,铱(V)和铱(III)之间的氧原子交换速率恒定,外推到20摄氏度,即5 x 10(7)M-1 s(-1)。氧杂(亚氨基)os(VIII)络合物(ArN)(3)OsO(Ar = 2,6-二异丙基苯基)也经历了简并的金属间原子转移至其脱氧配偶体(ArN)(3)Os。但是,尽管事实上它的金属-氧键强度和对三苯基膦的反应性与(mes)(3)IrO几乎相同,但,络合物(ArN)(3)OsO的氧原子转移速度却慢了12个数量级。到(ArN)(3)Os比(mes)(3)IrO到(mes)(3)Ir(k(OsOs)= 1.8 x 10(-5)M-1 s(-1)在20°C )。铱-cross交换发生的速度中等,与Marcus型交叉关系定量一致。铱-铱和-exchange汇率之间的巨大差异可以通过模拟内层重组能量来合理化。 Ir(III)和Ir(V)都是金字塔形的,并且在轨道允许的线性方法中可以以极少的能量成本形成金字塔形的铱(IV)。相反,平面三(亚氨基)os(VI)片段的锥体化需要在反键轨道上放置一对电子。 (mes)(3)IrO经历金属间氧原子转移的独特倾向使其能够在共催化氧化中充当双氧活化剂,例如与四氧化一起催化单取代烯烃的需氧二羟基化和烯丙基的选择性氧化和苯甲醇。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号