...
首页> 外文期刊>Journal of the American Chemical Society >Origin of Photocatalytic Activity of Nitrogen-Doped TiO_2 Nanobelts
【24h】

Origin of Photocatalytic Activity of Nitrogen-Doped TiO_2 Nanobelts

机译:氮掺杂TiO_2纳米带的光催化活性起源

获取原文
获取原文并翻译 | 示例
           

摘要

Experiments combined with the density functional theory (DFT) calculation have been performed to understand the underlying photocatalysis mechanism of the nitrogen-doped titania nanobelts. Nitrogen-doped anatase titania nanobelts are prepared via hydrothermal processing and subsequent heat treatment in NH_3. Both the nitrogen content and the oxygen vacancy concentration increase with increasing the NH_3 treatment temperature. Nitrogen doping leads to an add-on shoulder on the edge of the valence band, the localized N 2p levels above the valence band maximum, and the 3d states of Ti~(3+) below the conduction band, which is confirmed by DFT calculation and X-ray photoelectron spectroscopy (XPS) measurement. Extension of the light absorption from the ultraviolet (UV) region to the visible-light region arises from the N 2p levels near the valence band and from the color centers induced by the oxygen vacancies and the Ti~(3+) species. Nitrogen doping allows visible-light-responsive photocatalytic activity but lowers UV-light-responsive photocatalytic activity. The visible-light photocatalytic activity originates from the N 2p levels near the valence band. The oxygen vacancies and the associated Ti~(3+) species act as the recombination centers for the photoinduced electrons and holes. They reduce the photocatalytic activity although they contribute to the visible light absorbance.
机译:结合密度泛函理论(DFT)计算进行了实验,以了解氮掺杂二氧化钛纳米带的潜在光催化机理。通过水热处理和随后在NH_3中进行热处理来制备氮掺杂的锐钛矿型二氧化钛纳米带。氮含量和氧空位浓度均随着NH_3处理温度的升高而增加。氮掺杂导致价带边缘上的附加肩,价带最大值上方的局部N 2p能级和导带以下的Ti〜(3+)3d态,这已通过DFT计算得到证实和X射线光电子能谱(XPS)测量。吸收光从紫外线(UV)区域扩展到可见光区域的原因是价带附近的N 2p水平以及氧空位和Ti〜(3+)物种引起的色心。氮掺杂允许可见光响应的光催化活性,但降低了紫外线响应的光催化活性。可见光的光催化活性源自价带附近的N 2p水平。氧空位和相关的Ti〜(3+)物种充当光致电子和空穴的复合中心。尽管它们有助于可见光吸收,但是它们降低了光催化活性。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2009年第34期|12290-12297|共8页
  • 作者单位

    Department of Mechanical and Aerospace Engineering, WVNano Initiative, West Virginia University, Morgantown, West Virginia 26506-6106;

    Department of Physics, West Virginia University, Morgantown, West Virginia 26506, State Key Laboratory of Silicon Materials;

    Department of Physics, West Virginia University, Morgantown, West Virginia 26506, State Key Laboratory of Silicon Materials;

    Department of Materials Science & Engineering, Zhejiang University, Hangzhou 310027, P.R. China;

    Department of Physics, West Virginia University, Morgantown, West Virginia 26506, State Key Laboratory of Silicon Materials National Energy Technology Laboratory, U.S. Department of Energy, Morgantown, West Virginia 26507;

    Department of Mechanical and Aerospace Engineering, WVNano Initiative, West Virginia University, Morgantown, West Virginia 26506-6106;

    Department of Mechanical and Aerospace Engineering, WVNano Initiative, West Virginia University, Morgantown, West Virginia 26506-6106;

    Department of Mechanical and Aerospace Engineering, WVNano Initiative, West Virginia University, Morgantown, West Virginia 26506-6106;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号