...
首页> 外文期刊>Journal of the American Chemical Society >Phase-Equilibrium-Dominated Vapor-Liquid-Solid Growth Mechanism
【24h】

Phase-Equilibrium-Dominated Vapor-Liquid-Solid Growth Mechanism

机译:相平衡主导的汽液固相生长机理

获取原文
获取原文并翻译 | 示例
           

摘要

The vapor-liquid-solid (VLS) growth model has been widely used to direct the growth of one-dimensional (1D) nanomaterials, but the origin of the proposed process has not been experimentally confirmed. Here we report the experimental evidence of the origin of VLS growth. AI_(69)Ni_(31) alloyed particles are used as "catalysts" for growing AIN nanowires by nitridation reaction in N_2-NH_3 at different temperatures. The nanowire growth occurs following the emergence of the catalyst droplets as revealed by in situ X-ray diffraction and thermal analysis. The physicochemical process involved has been elucidated by quantitative analysis on the evolution of the lattice parameters and relative contents of the nitridation products. These direct experimental results reveal that VLS growth of AIN nanowires is dominated by the phase equilibrium of the Al-Ni alloy catalyst. The in-depth insight into the VLS mechanism indicates the general validity of this growth model and may facilitate the rational design and controllable growth of 1D nanomaterials according to the corresponding phase diagrams.
机译:气液固(VLS)生长模型已被广泛用于指导一维(1D)纳米材料的生长,但是该方法的起源尚未得到实验证实。在这里,我们报告VLS增长起源的实验证据。 AI_(69)Ni_(31)合金颗粒被用作“催化剂”,以通过在N_2-NH_3中不同温度下的氮化反应来生长AIN纳米线。如原位X射线衍射和热分析所揭示的,纳米线的生长是在催化剂液滴出现之后发生的。通过对晶格参数的演变和氮化产物的相对含量进行定量分析,阐明了所涉及的物理化学过程。这些直接的实验结果表明,AlN-镍合金催化剂的相平衡主导着AIN纳米线的VLS生长。对VLS机制的深入了解表明了该生长模型的一般有效性,并且可以根据相应的相图促进一维纳米材料的合理设计和可控生长。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2010年第13期|p.4843-4847|共5页
  • 作者单位

    Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China;

    Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China;

    Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China;

    Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China;

    Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China;

    Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China;

    Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号