...
首页> 外文期刊>Journal of the American Chemical Society >Effect of Ca~(2+)/Sr~(2+) Substitution on the Electronic Structure of the Oxygen-Evolving Complex of Photosystem II: A Combined Multifrequency EPR, ~(55)Mn-ENDOR, and DFT Study of the S_2 State
【24h】

Effect of Ca~(2+)/Sr~(2+) Substitution on the Electronic Structure of the Oxygen-Evolving Complex of Photosystem II: A Combined Multifrequency EPR, ~(55)Mn-ENDOR, and DFT Study of the S_2 State

机译:Ca〜(2 +)/ Sr〜(2+)取代对光生体系II析氧复合物电子结构的影响:结合多频EPR,〜(55)Mn-ENDOR和DFT研究S_2状态

获取原文
获取原文并翻译 | 示例
           

摘要

The electronic structures of the native Mn_4O_xCa cluster and the biosynthetically substituted Mn_4O_xSr cluster of the oxygen evolving complex (OEC) of photosystem II (PSII) core complexes isolated from Thermosynechococcus elongatus, poised in the S_2 state, were studied by X- and Q-band CW-EPR and by pulsed Q-band Mn-ENDOR spectroscopy. Both wild type and tyrosine D less mutants grown photoautotrophically in either CaCl_2 or SrCl_2 containing media were measured. The obtained CW-EPR spectra of the S_2 state displayed the characteristic, clearly noticeable differences in the hyperfine pattern of the multiline EPR signal [Boussac et al. /. Biol. Chem. 2004, 279, 22809-22819]. In sharp contrast, the manganese (~55Mn) ENDOR spectra of the Ca and Sr forms of the OEC were remarkably similar. Multifrequency simulations of the X- and Q-band CW-EPR and ~55Mn-pulsed ENDOR spectra using the Spin Hamiltonian formalism were performed to investigate this surprising result. It is shown that (i) all four manganese ions contribute to the ~(55)Mn-ENDOR spectra; (ii) only small changes are seen in the fitted isotropic hyperfine values for the Ca~(2+) and Sr~(2+) containing OEC, suggesting that there is no change in the overall spin distribution (electronic coupling scheme) upon Ca~(2+)/Sr~(2+) substitution; (iii) the changes in the CW-EPR hyperfine pattern can be explained by a small decrease in the anisotropy of at least two hyperfine tensors. It is proposed that modifications at the Ca2+ site may modulate the fine structure tensor of the MnⅢ ion. DFT calculations support the above conclusions. Our data analysis also provides strong support for the notion that in the S_2 state the coordination of the Mn ion is square-pyramidal (5-coordinate) or octahedral (6-coordinate) with tetragonal elongation. In addition, it is shown that only one of the currently published OEC models, the Siegbahn structure [Siegbahn, P. E. M. Acc. Chem. Res. 2009, 42, 1871 - 1880, Pantazis, D. A. et al. Phys. Chem. Chem. Phys. 2009,11, 6788-6798], is consistent with all data presented here. These results provide important information for the structure of the OEC and the water-splitting mechanism. In particular, the 5-coordinate MnⅢ is a potential site for substrate 'water' (H_2O, OH ) binding. Its location within the cuboidal structural unit, as opposed to the external 'dangler' position, may have important consequences for the mechanism of O-O bond formation.
机译:通过X波段和Q波段研究了从细长嗜热球藻分离的光系统II(PSII)核心配合物的氧演化配合物(OEII)的天然Mn_4O_xCa簇和生物合成取代的Mn_4O_xSr簇的电子结构。 CW-EPR和脉冲Q波段Mn-ENDOR光谱。测量了在含有CaCl_2或SrCl_2的培养基中自养生长的野生型和少酪氨酸D突变体。获得的S_2状态的CW-EPR光谱显示出特征,在多行EPR信号的超精细模式中明显可见的差异[Boussac等。 /。生物学化学2004,279,22809-22819]。与之形成鲜明对比的是,OEC的Ca和Sr形式的锰(〜55Mn)ENDOR光谱非常相似。使用自旋哈密顿形式对X和Q波段CW-EPR和〜55Mn脉冲ENDOR谱进行了多频模拟,以研究这一令人惊讶的结果。结果表明:(i)所有四个锰离子都对〜(55)Mn-ENDOR光谱有贡献; (ii)包含OEC的Ca〜(2+)和Sr〜(2+)的拟合各向同性超细值只有很小的变化,表明Ca时的整体自旋分布(电子耦合方案)没有变化〜(2 +)/ Sr〜(2+)取代; (iii)CW-EPR超精细模式的变化可以通过至少两个超精细张量的各向异性的小幅减小来解释。提出在Ca2 +位点进行修饰可调节MnⅢ离子的精细结构张量。 DFT计算支持以上结论。我们的数据分析也为以下观点提供了强有力的支持:在S_2状态下,Mn离子的配位为四边形伸长的方锥(5坐标)或八面体(6坐标)。另外,表明只有一种当前公开的OEC模型,即Siegbahn结构[Siegbahn,P. E. M. Acc。化学Res。 2009,42,1871-1880,Pantazis,D.A.等。物理化学化学物理2009,11,6788-6798],与此处提供的所有数据一致。这些结果为OEC的结构和水分解机理提供了重要的信息。特别地,5坐标MnⅢ是底物“水”(H_2O,OH)结合的潜在位点。与外部“悬挂器”位置相反,它在立方体结构单元中的位置可能会对O-O键形成机理产生重要影响。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2011年第10期|p.3635-3648|共14页
  • 作者单位

    Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Miilheim an der Ruhr, Germany;

    Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Miilheim an der Ruhr, Germany;

    Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Miilheim an der Ruhr, Germany;

    Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Miilheim an der Ruhr, Germany,Lehrstuhl fur Theoretische Chemie, Institut für Physikalische und Theoretische Chemie, Universitat Bonn, Wegelerstrasse 12,D-53115 Bonn, Germany;

    Cell-Free Science and Technology Research Center, Ehime University, Bunkyo-cho, Matsuyama Ehime 790-8577, Japan;

    Institute of Chemical Kinetics and Combustion, Institutskaya 3, 630090 Novosibirsk, Russia;

    iBiTec-S, URA CNRS 2096, CEA Saclay, 91191 Gif-sur-Yvette, France;

    iBiTec-S, URA CNRS 2096, CEA Saclay, 91191 Gif-sur-Yvette, France;

    Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Miilheim an der Ruhr, Germany,Lehrstuhl fur Theoretische Chemie, Institut für Physikalische und Theoretische Chemie, Universitat Bonn, Wegelerstrasse 12,D-53115 Bonn, Germany;

    iBiTec-S, URA CNRS 2096, CEA Saclay, 91191 Gif-sur-Yvette, France;

    Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Miilheim an der Ruhr, Germany;

    Department of Chemistry, Chemical Biological Centre (KBC), Umeå University, S-90187 Umeå, Sweden;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号