...
首页> 外文期刊>Journal of the American Chemical Society >Multiscale Simulation Reveals Multiple Pathways for H_2 and O_2Transport in a [NiFe]-Hydrogenase
【24h】

Multiscale Simulation Reveals Multiple Pathways for H_2 and O_2Transport in a [NiFe]-Hydrogenase

机译:多尺度模拟揭示了[NiFe]-加氢酶中H_2和O_2转运的多种途径。

获取原文
获取原文并翻译 | 示例
           

摘要

Hydrogenases are enzymes that catalyze the reversible conversion of hydrogen molecules to protons and electrons. The mechanism by which the gas molecules reach the active site is important for understanding the function of the enzyme and may play a role in the selectivity for hydrogen over inhibitor molecules. Here, we develop a general multiscale molecular simulation approach for the calculation of diffusion rates and determination of pathways by which substrate or inhibitor gases can reach the protein active site. Combining kinetic data from both equilibrium simulations and enhanced sampling, we construct a master equation describing the movement of gas molecules within the enzyme. We find that the time-dependent gas population of the active site can be fit to the same phenomenological rate law used to interpret experiments, with corresponding diffusion rates in very good agreement with experimental data. However, in contrast to the conventional picture, in which the gases follow a well-defined hydrophobic tunnel, we find that there is a diverse network of accessible pathways by which the gas molecules can reach the active site. The previously identified tunnel accounts for only about 60% of the total flux. Our results suggest that the dramatic decrease in the diffusion rate for mutations involving the residue Val74 could be in part due to the narrowing of the passage Val74-Arg476, immediately adjacent to the binding site, explaining why mutations of Leu 122 had only a negligible effect in experiment. Our method is not specific to the [NiFe]-hydrogenase and should be generally applicable to the transport of small molecules in proteins.
机译:氢化酶是催化氢分子向质子和电子的可逆转化的酶。气体分子到达活性位点的机制对于理解酶的功能很重要,并且可能在氢对抑制剂分子的选择性中发挥作用。在这里,我们开发了一种通用的多尺度分子模拟方法,用于计算扩散速率和确定底物或抑制剂气体可以到达蛋白质活性位点的途径。结合来自平衡模拟和增强采样的动力学数据,我们构建了一个描述气体分子在酶内运动的主方程。我们发现活动时间随时间变化的气体种群可以与用于解释实验的现象学速率定律相符,相应的扩散速率与实验数据非常吻合。但是,与传统图片相反,在传统图片中,气体遵循定义明确的疏水通道,我们发现气体分子可以通过多种途径到达活性位点。先前确定的隧道仅占总通量的约60%。我们的结果表明,涉及残基Val74的突变的扩散速率急剧下降,部分原因是紧邻结合位点的Val74-Arg476通道变窄,从而解释了为什么Leu 122突变的影响可忽略不计在实验中。我们的方法不是[NiFe]氢化酶特有的,通常应适用于蛋白质中小分子的运输。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2011年第10期|p.3548-3556|共9页
  • 作者单位

    Department of Physics and Astronomy, University College London, London WC1E6BT, United Kingdom;

    Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom;

    Department of Physics and Astronomy, University College London, London WC1E6BT, United Kingdom;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号