...
首页> 外文期刊>Journal of the American Chemical Society >Heterogeneous Spin States in Ultrathin Nanosheets Induce Subtle Lattice Distortion To Trigger Efficient Hydrogen Evolution
【24h】

Heterogeneous Spin States in Ultrathin Nanosheets Induce Subtle Lattice Distortion To Trigger Efficient Hydrogen Evolution

机译:超薄纳米片中的非均质自旋态引起细微的晶格畸变以触发有效的氢释放

获取原文
获取原文并翻译 | 示例
           

摘要

The exploration of efficient nonprecious metal eletroca-talysis of the hydrogen evolution reaction (HER) is an extraordinary challenge for future applications in sustainable energy conversion. The family of first-row-transition-metal dichalcogenides has received a small amount of research, including the active site and dynamics, relative to their extraordinary potential. In response, we developed a strategy to achieve synergistically active sites and dynamic regulation in first-row-transition-metal dichalcogenides by the heterogeneous spin states incorporated in this work. Specifically, taking the metallic Mn-doped pyrite CoSe_2 as a self-adaptived, subtle atomic arrangement distortion to provide additional active edge sites for HER will occur in the CoSe_2 atomic layers with Mn incorporated into the primitive lattice, which is visually verified by HRTEM. Synergistically, the density functional theory simulation results reveal that the Mn incorporation lowers the kinetic energy barrier by promoting H-H bond formation on two adjacently adsorbed H atoms, benefiting H_2 gas evolution. As a result, the Mn-doped CoSe_2 ultrathin nanosheets possess useful HER properties with a low overpotential of 174 mV, an unexpectedly small Tafel slope of 36 mV/dec, and a larger exchange current density of 68.3 μA cm~(-2). Moreover, the original concept of coordinated regulation presented in this work can broaden horizons and provide new dimensions in the design of newly highly efficient catalysts for hydrogen evolution.
机译:氢气释放反应(HER)的有效非贵金属电解分析的探索对于可持续能源转换的未来应用是一个非凡的挑战。相对于其非凡的潜力,第一行过渡金属二硫属化合物家族已经进行了少量研究,包括活性位点和动力学。作为回应,我们制定了一项策略,通过并入这项工作的异质自旋态实现了第一行过渡金属二硫代化合物中的协同活性位点和动态调节。具体而言,将金属锰掺杂的黄铁矿CoSe_2作为自适应的,微妙的原子排列畸变,以为HER提供额外的活性边缘位点,这将发生在将Mn掺入原始晶格的CoSe_2原子层中,这通过HRTEM进行了视觉验证。协同地,密度泛函理论模拟结果表明,Mn的掺入通过促进两个相邻吸附的H原子上的H-H键形成而降低了动能垒,从而有利于H_2气体的逸出。结果,Mn掺杂的CoSe_2超薄纳米片具有有用的HER特性,其低电势为174 mV,Tafel斜率出乎意料的小,为36 mV / dec,交换电流密度为68.3μAcm〜(-2)。此外,这项工作中提出的原始协调调控概念可以拓宽视野,并为设计新的高效析氢催化剂提供新的维度。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2016年第15期|5087-5092|共6页
  • 作者单位

    Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China;

    Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China;

    Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China;

    Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials (AIIM), and School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, North Wollongong, NSW 2500, Australia;

    Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China;

    Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials (AIIM), and School of Mechanical, Materials and Mechatronics Engineering, University of Wollongong, North Wollongong, NSW 2500, Australia;

    Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China;

    Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, University of Science & Technology of China, Hefei, Anhui 230026, P. R. China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号