...
首页> 外文期刊>Journal of the American Chemical Society >Transfer Hydrogenation of Alkenes Using Ethanol Catalyzed by a NCP Pincer Iridium Complex: Scope and Mechanism
【24h】

Transfer Hydrogenation of Alkenes Using Ethanol Catalyzed by a NCP Pincer Iridium Complex: Scope and Mechanism

机译:NCP夹钳铱配合物催化的乙醇转移烯烃加氢反应:范围和机理

获取原文
获取原文并翻译 | 示例
           

摘要

The first general catalytic approach to effecting transfer hydrogenation (TH) of unactivated alkenes using ethanol as the hydrogen source is described. A new NCP-type pincer iridium complex (~(BQ)-NC~(O)P)IrHCl containing a rigid benzoquinoline backbone has been developed for efficient, mild TH of unactivated C–C multiple bonds with ethanol, forming ethyl acetate as the sole byproduct. A wide variety of alkenes, including multisubstituted alkyl alkenes, aryl alkenes, and heteroatom-substituted alkenes, as well as O - or N -containing heteroarenes and internal alkynes, are suitable substrates. Importantly, the (~(BQ)-NC~(O)P)Ir/EtOH system exhibits high chemoselectivity for alkene hydrogenation in the presence of reactive functional groups, such as ketones and carboxylic acids. Furthermore, the reaction with C_(2)D_(5)OD provides a convenient route to deuterium-labeled compounds. Detailed kinetic and mechanistic studies have revealed that monosubstituted alkenes (e.g., 1-octene, styrene) and multisubstituted alkenes (e.g., cyclooctene (COE)) exhibit fundamental mechanistic difference. The OH group of ethanol displays a normal kinetic isotope effect (KIE) in the reaction of styrene, but a substantial inverse KIE in the case of COE. The catalysis of styrene or 1-octene with relatively strong binding affinity to the Ir(I) center has (~(BQ)-NC~(O)P)Ir~(I)(alkene) adduct as an off-cycle catalyst resting state, and the rate law shows a positive order in EtOH, inverse first-order in styrene, and first-order in the catalyst. In contrast, the catalysis of COE has an off-cycle catalyst resting state of (~(BQ)-NC~(O)P)Ir~(III)(H)[O(Et)···HO(Et)···HOEt] that features a six-membered iridacycle consisting of two hydrogen-bonds between one EtO ligand and two EtOH molecules, one of which is coordinated to the Ir(III) center. The rate law shows a negative order in EtOH, zeroth-order in COE, and first-order in the catalyst. The observed inverse KIE corresponds to an inverse equilibrium isotope effect for the pre-equilibrium formation of (~(BQ)-NC~(O)P)Ir~(III)(H)(OEt) from the catalyst resting state via ethanol dissociation. Regardless of the substrate, ethanol dehydrogenation is the slow segment of the catalytic cycle, while alkene hydrogenation occurs readily following the rate-determining step, that is, β-hydride elimination of (~(BQ)-NC~(O)P)Ir(H)(OEt) to form (~(BQ)-NC~(O)P)Ir(H)_(2) and acetaldehyde. The latter is effectively converted to innocent ethyl acetate under the catalytic conditions, thus avoiding the catalyst poisoning via iridium-mediated decarbonylation of acetaldehyde.
机译:描述了使用乙醇作为氢源进行未活化烯烃的转移加氢(TH)的第一种通用催化方法。已开发出一种新的NCP型夹钳铱配合物(〜(BQ)-NC〜(O)P)IrHCl,其中含有刚性苯并喹啉骨架,可有效,温和地与乙醇形成未活化的C–C多键,并形成乙酸乙酯。唯一的副产品。合适的底物是各种烯烃,包括多取代的烷基烯烃,芳基烯烃和杂原子取代的烯烃,以及含O-或N-的杂芳烃和内部炔烃。重要的是,(〜(BQ)-NC〜(O)P)Ir / EtOH体系在存在反应性官能团(例如酮和羧酸)的情况下,对烯烃加氢显示出高化学选择性。此外,与C_(2)D_(5)OD的反应为氘标记的化合物提供了便利的途径。详细的动力学和机理研究表明,单取代的烯烃(例如1-辛烯,苯乙烯)和多取代的烯烃(例如环辛烯(COE))表现出基本的机理差异。乙醇的OH基团在苯乙烯的反应中显示出正常的动力学同位素效应(KIE),但是在COE的情况下则表现出相当大的逆KIE。对Ir(I)中心具有较强结合亲和力的苯乙烯或1-辛烯的催化具有(〜(BQ)-NC〜(O)P)Ir〜(I)(烯烃)加合物作为非循环催化剂速率定律在EtOH中显示一个正序,在苯乙烯中显示反一阶,在催化剂中显示一阶。相反,COE的催化状态为(〜(BQ)-NC〜(O)P)Ir〜(III)(H)[O(Et)···HO(Et)· ··HOEt],具有一个六元iridacycle由一种环氧乙烷配位体和两个EtOH中的分子,其中一个配位到IR(III)中心之间的两个氢键。速率定律在EtOH中显示为负序,在COE中显示为零阶,在催化剂中显示为一阶。观测到的逆KIE对应于(i)的(〜(BQ)-NC〜(O)P)Ir〜(III)(H)(OEt)的预平衡形成的逆平衡同位素效应。催化剂通过乙醇解离而处于静止状态。不论何种底物,乙醇脱氢都是催化循环的慢段,而烯烃加氢在速率确定步骤后即发生β-氢化物消除(〜(BQ)-NC〜(O)P)Ir的过程中很容易发生。 (H)(OEt)形成(〜(BQ)-NC〜(O)P)Ir(H)_(2)和乙醛。后者在催化条件下有效地转化为纯正的乙酸乙酯,从而避免了由于铱介导的乙醛脱羰作用而引起的催化剂中毒。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2018年第12期|4417-4429|共13页
  • 作者单位

    State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China;

    State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China;

    State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China;

    State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China;

    State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China;

    State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号