首页> 美国卫生研究院文献>Frontiers in Systems Neuroscience >Scaling of Optogenetically Evoked Signaling in a Higher-Order Corticocortical Pathway in the Anesthetized Mouse
【2h】

Scaling of Optogenetically Evoked Signaling in a Higher-Order Corticocortical Pathway in the Anesthetized Mouse

机译:麻醉小鼠中高阶皮层皮质通路中光遗传学信号的缩放。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Quantitative analysis of corticocortical signaling is needed to understand and model information processing in cerebral networks. However, higher-order pathways, hodologically remote from sensory input, are not amenable to spatiotemporally precise activation by sensory stimuli. Here, we combined parametric channelrhodopsin-2 (ChR2) photostimulation with multi-unit electrophysiology to study corticocortical driving in a parietofrontal pathway from retrosplenial cortex (RSC) to posterior secondary motor cortex (M2) in mice in vivo. Ketamine anesthesia was used both to eliminate complex activity associated with the awake state and to enable stable recordings of responses over a wide range of stimulus parameters. Photostimulation of ChR2-expressing neurons in RSC, the upstream area, produced local activity that decayed quickly. This activity in turn drove downstream activity in M2 that arrived rapidly (5–10 ms latencies), and scaled in amplitude across a wide range of stimulus parameters as an approximately constant fraction (~0.1) of the upstream activity. A model-based analysis could explain the corticocortically driven activity with exponentially decaying kernels (~20 ms time constant) and small delay. Reverse (antidromic) driving was similarly robust. The results show that corticocortical signaling in this pathway drives downstream activity rapidly and scalably, in a mostly linear manner. These properties, identified in anesthetized mice and represented in a simple model, suggest a robust basis for supporting complex non-linear dynamic activity in corticocortical circuits in the awake state.
机译:需要对皮层皮质信号进行定量分析,以了解和模拟大脑网络中的信息处理。但是,从感觉上说,远离感觉输入的高阶通路不适合由感觉刺激在时空上精确激活。在这里,我们结合参数通道视紫红质2(ChR2)光刺激与多单元电生理学,以研究体内小鼠从脾后皮质(RSC)到后继发性运动皮质(M2)的额叶途径的皮层驱动。氯胺酮麻醉既用于消除与清醒状态有关的复杂活动,又可在各种刺激参数上稳定记录反应。上游区域RSC中表达ChR2的神经元的光刺激产生局部活性,该活性迅速衰减。这种活动反过来推动了M2中的下游活动迅速到达(5-10 ms延迟),并在一系列刺激参数上的幅度成比例增加,大约是上游活动的恒定部分(〜0.1)。基于模型的分析可以解释皮层皮层驱动的活动,其核呈指数衰减(约20毫秒的时间常数)且延迟小。倒车(反驾驶)同样也很坚固。结果表明,该途径中的皮层皮质信号传导以线性方式快速且可扩展地驱动下游活动。这些特性在麻醉小鼠中鉴定并以简单模型表示,为在醒着状态的皮层皮质回路中支持复杂的非线性动态活动提供了坚实的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号