首页> 外文学位 >Advanced Modeling of Nanoparticle Nucleation Towards the simulation of particle synthesis.
【24h】

Advanced Modeling of Nanoparticle Nucleation Towards the simulation of particle synthesis.

机译:纳米粒子成核的高级建模旨在模拟粒子合成。

获取原文
获取原文并翻译 | 示例

摘要

Nanotechnology holds a lot of promise for the discovery of new phenomena, and many of the envisioned processes involve nanoparticles. These particles are found in chemical sensors, drug targeting and delivery, and one important application is motivated by the need of clean renewable flow systems plays an essential role in a variety of natural and industrial processes of nanoparticle synthesis. In this work, nucleation processes of several metal materials and dibutyl phthalate (DBP) nanoparticles in laminar and turbulent flows are investigated via direct numerical simulations (DNS). The flows consist of condensing vapor diluted in argon or nitrogen issuing into a cooler particle-free stream. DNS facilitates probing the interactive effects of fluid dynamics and nucleation in an accurate manner. The fluid, thermal and chemical fields are governed by the Navier-Stokes, enthalpy, and mass transport equations. Nucleation is simulated via calibrated classical homogeneous nucleation models. Recently developed size dependent surface tension model offers increased accuracy in predicting metal particle nucleation. This approach is attractive in that it promises to be more accurate than the classical nucleation theory while maintaining much of its simplicity when coupling with fluid dynamics. The effects of flow turbulence on metal nucleation are also studied via fully resolved DNS to elucidate the effects of different stages of fluid mixing on metal particle nucleation. The effects of nucleation on fluid dynamics are investigated via DNS of DBP nucleation within both laminar and turbulent jet flows. The simulations provide a demonstration of how heat release affects the interactions of fluid dynamics and nucleation at different Reynolds numbers and particle formation rates. The results provide insights into the interaction of fluid, thermal transport and nanoparticle nucleation in various flows, which stimulate development of models that will allow engineers to optimize the fluid and thermal environments for industrial nanoparticle production. For brevity, specific conclusions are provided in each chapter.
机译:纳米技术对于发现新现象具有广阔的前景,并且许多设想的过程都涉及纳米颗粒。这些颗粒存在于化学传感器,药物靶向和递送中,一种重要的应用是由对清洁的可再生流动系统的需求推动的,该系统在各种自然和工业的纳米颗粒合成过程中起着至关重要的作用。在这项工作中,通过直接数值模拟(DNS)研究了层流和湍流中几种金属材料和邻苯二甲酸二丁酯(DBP)纳米颗粒的成核过程。气流由稀释在氩气或氮气中的冷凝蒸汽组成,并排放到较冷的无颗粒流中。 DNS有助于以精确的方式探测流体动力学和成核的交互作用。流体场,热场和化学场受Navier-Stokes,焓和质量传输方程式控制。通过校准的经典均质成核模型模拟成核。最近开发的尺寸依赖性表面张力模型在预测金属颗粒成核方面提供了更高的准确性。这种方法之所以具有吸引力,是因为它有望比经典的成核理论更加精确,同时在与流体动力学耦合时保持其简单性。还通过完全解析的DNS研究了湍流对金属成核的影响,以阐明流体混合不同阶段对金属颗粒成核的影响。通过层流和湍流射流中的DBP成核DNS,研究了成核对流体动力学的影响。模拟提供了热量释放如何在不同的雷诺数和颗粒形成速率下如何影响流体动力学和成核相互作用的演示。结果提供了洞察流体在各种流动中的流体,热传输和纳米颗粒成核作用的相互作用,从而刺激了模型的开发,这些模型将使工程师能够优化用于工业纳米颗粒生产的流体和热环境。为简洁起见,每章均提供了具体的结论。

著录项

  • 作者

    Liu, Jun.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Engineering Chemical.;Nanotechnology.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号