首页> 外文会议>Systems, Applications and Technology Conference, 2009. LISAT '09 >Parallel computation methods for enhanced MOM and MLFMM performance
【24h】

Parallel computation methods for enhanced MOM and MLFMM performance

机译:增强MOM和MLFMM性能的并行计算方法

获取原文

摘要

The success of present and future intelligence, surveillance and reconnaissance (ISR) systems, in an increasingly electromagnetically complex world, is going to depend directly upon the speed and efficiency of our computational systems. These systems are used for advanced electromagnetic computations such as antenna cosite coupling, intermodulation, and radar cross section (RCS) analyses, among many more applications. Such computations require the use of first principle electromagnetic codes, such as method of moments (MoM) and Multilevel Fast Multipole Method (MLFMM), to perform full wave analyses. Unfortunately, these methods are very time consuming and memory prohibitive due to the inherent complexity of our ISR systems. At present, the models currently being used for analysis of EM computations could take days or even weeks to formulate a solution. Many times, it takes hours to simply determine if there is an error in the problem or if it is unsolvable. Since real-time computation analysis is so important to the defense industry, Northrop Grumman has been working extensively to discover ways in which to make these necessary calculations faster and more efficient. Graphics Processing Unit (GPU) computation offers a unique opportunity for electromagnetic simulation acceleration. GPU technology has been advancing faster than CPU technology due to a consumer fueled gaming industry. GPUs use a unique pixel based system that can not be simulated in an ordinary CPU and therefore allows for unique benefits when running computations. Northrop Grumman has been collaborating with Stony Brook University to explore their research in GPU computation. Northrop Grumman has its own, functioning, 6 node GPU cluster that we hope to use, in parallel with compressive sensing. Our GPU cluster will be able to parallelize the complex computations across the six nodes of the system, which will again decrease computation time. GPU computation has many applications besides electromagnetic-n modeling and RCS analysis. These modern adaptations for complex computing can be applied to virtually any large, complex and time-consuming problem. With these modifications, we hope to be able to increase the ability of our systems to handle computations that are more difficult because the complexity of our world will only continue to increase.
机译:在日益复杂的电磁世界中,当前和未来的情报,监视和侦察(ISR)系统的成功将直接取决于我们的计算系统的速度和效率。这些系统可用于高级电磁计算,例如天线共址耦合,互调和雷达横截面(RCS)分析,还有许多其他应用。这种计算需要使用第一原理电磁代码(例如矩量法(MoM)和多级快速多极子方法(MLFMM))来执行全波分析。不幸的是,由于我们的ISR系统固有的复杂性,这些方法非常耗时且无法存储。目前,当前用于EM计算分析的模型可能需要数天甚至数周才能制定解决方案。很多时候,仅需几个小时即可确定问题是否存在错误或无法解决。由于实时计算分析对国防工业非常重要,因此诺斯罗普·格鲁曼公司一直在广泛地探索如何更快,更有效地进行这些必要的计算的方法。图形处理单元(GPU)计算为电磁仿真加速提供了独特的机会。由于消费者推动了游戏行业,GPU技术的发展速度比CPU技术快。 GPU使用无法在普通CPU中进行仿真的基于像素的独特系统,因此在运行计算时具有独特的优势。诺斯罗普·格鲁曼公司(Northrop Grumman)与美国石溪大学(Stony Brook University)合作,探索他们在GPU计算方面的研究。诺斯罗普·格鲁曼公司(Northrop Grumman)具有自己的功能性6节点GPU集群,我们希望将其与压缩传感并行使用。我们的GPU集群将能够在系统的六个节点上并行执行复杂的计算,这将再次减少计算时间。除了电磁n建模和RCS分析之外,GPU计算还有许多应用。这些用于复杂计算的现代方法几乎可以应用于任何大型,复杂和耗时的问题。通过这些修改,我们希望能够提高系统处理更困难的计算的能力,因为我们世界的复杂性只会继续增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号